Complutense University Library

Heat flow, lenticulae spacing, and possibility of convection in the ice shell of Europa

Ruiz Pérez, Javier and Tejero López, Rosa María (2003) Heat flow, lenticulae spacing, and possibility of convection in the ice shell of Europa. Icarus (New York, N.Y. 1991), 162 . pp. 362-373. ISSN 1054-1381

[img] PDF
170kB

Official URL: http://icarus.cornell.edu/journal/

View download statistics for this eprint

==>>> Export to other formats

Abstract

Two opposing models to explain the geological features observed on Europa’s surface have been proposed. The thin-shell model states
that the ice shell is only a few kilometers thick, transfers heat by conduction only, and can become locally thinner until it exposes an
underlying ocean on the satellite’s surface. According to the thick-shell model, the ice shell may be several tens of kilometers thick and have
a lower convective layer, above which there is a cold stagnant lid that dissipates heat by conduction. Whichever the case, from magnetic
data there is strong support for the presence of a layer of salty liquid water under the ice. The present study was performed to examine
whether the possibility of convection is theoretically consistent with surface heat flows of 100–200 mW m2, deduced from a thin brittle
lithosphere, and with the typical spacing of 15–23 km proposed for the features usually known as lenticulae. It was obtained that under
Europa’s ice shell conditions convection could occur and also account for high heat flows due to tidal heating of the convective (nearly
isothermal) interior, but only if the dominant water ice rheology is superplastic flow (with activation energy of 49 kJ mol1; this is the
rheology thought dominant in the warm interior of the ice shell). In this case the ice shell would be 15–50 km thick. Furthermore, in this
scenario explaining the origin of the lenticulae related to convective processes requires ice grain size close to 1 mm and ice thickness around 15–20 km.

Item Type:Article
Uncontrolled Keywords:Europa; Satellites of Jupiter; Thermal histories; Tides; Solid body
Subjects:Sciences > Geology > Geodynamics
ID Code:10430
Deposited On:14 Apr 2010 16:03
Last Modified:14 Apr 2010 16:03

Repository Staff Only: item control page