Biblioteca de la Universidad Complutense de Madrid

Unbounded violations of bipartite Bell Inequalities via Operator Space theory

Impacto

Villanueva, Ignacio y Junge, Marius y Pérez García, David y Wolf, Michael y Palazuelos Cabezón, Carlos (2010) Unbounded violations of bipartite Bell Inequalities via Operator Space theory. Communications in Mathematical Physics, 300 (3). pp. 715-739. ISSN 0010-3616

[img] PDF
286kB
[img] PDF
Restringido a Sólo personal autorizado del repositorio

359kB

URL Oficial: http://link.springer.com/article/10.1007/s00220-010-1125-5




Resumen

In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order Ω(√n∕Log2n) when observables with n possible outcomes are used. A central tool in the analysis is a close relation between this problem and operator space theory and, in particular, the very recent noncommutative Lp embedding theory.
As a consequence of this result, we obtain better Hilbert space dimension witnesses and quantum violations of Bell inequalities with better resistance to noise.


Tipo de documento:Artículo
Palabras clave:Banach-spaces; Quantum entanglement
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:10961
Referencias:

Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

Acin, A., Masanes, L., Gisin, N.: From Bell's Theorem to Secure Quantum Key Distribution. Phys. Rev. Lett. 97, 120405 (2006)

Bell, J.S.: On the Einstein-Poldolsky-Rosen paradox. Physics 1, 195 (1964)

Bennett, C., Sharpley, R.: Interpolation of operators. London-New York: Academic Press, 1988

Ben-Or, M., Hassidim, A., Pilpel, H.: Quantum Multi Prover Interactive Proofs with Communicating Provers. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), Los Alamitos, CA: IEEE, 2008

Brassard, G., Broadbent, A., Tapp, A.: Quantum Pseudo-Telepathy. Found. Phys. 35(11), 1877–1907 (2005)

Briët, J., Buhrman, H., Toner, B.: A generalized Grothendieck inequality and entanglement in XOR games. http://arXiv.org/abs/0901.2009v1 [quant-ph], 2009

Brunner, N., Gisin, N., Scarani, V., Simon, C.: Detection loophole in asymmetric Bell experiments. Phys. Rev. Lett. 98, 220403 (2007)

Brunner, N., Pironio, S., Acin, A., Gisin, N., Methot, A.A., Scarani, V.: Testing the Hilbert space dimension. Phys. Rev. Lett. 100, 210503 (2008)

Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Non-locality and Communication Complexity. Rev. Mod. Phys. 82, 665 (2010)

Cabello, A., Larsson, J.-A.: Minimum detection efficiency for a loophole-free atom-photon Bell experiment. Phys. Rev. Lett. 98, 220402 (2007)

Cabello, A., Rodriguez, D., Villanueva, I.: Necessary and sufficient detection efficiency for the Mermin inequalities. Rev. Lett. 101, 120402 (2008)

Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and Limits of Nonlocal Strategies. In: Proceedings of the 19th IEEE Annual Conference on Computational Complexity (CCC 2004), Los Alamitos, CA: IEEE, pp. 236–249

Cleve, R., Gavinsly, D., Jain, R.: Entanglement-Resistant Two-Prover Interactive Proof Systems and Non-Adaptive Private Information Retrieval Systems. http://arXiv.org/abs/quant-ph/0707.1729v1 [quant-ph], 2007

Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. JAMS 22(1), 211–231 (2009)

Collins, D., Gisin, N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A: Math. Gen. 37, 1775–1787 (2004)

Defant, A., Floret, K.: Tensor Norms and Operator Ideals. Amsterdam: North-Holland, 1993

Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signaling distributions. Lect. Notes Comp. Sci. 5734, 270–281 (2009)

Doherty, A.C., Liang, Y-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Proc. of IEEE Conference on Computational Complexity 2008, Los Alamitos, CA: IEEE, pp. 199–210 MR2513501 (2010e:81058)

Effros, E.G., Ruan, Z.-J.: Operator spaces. London Math. Soc. Monographs New Series, Oxford: Clarendon Press, 2000 MR1793753 (2002a:46082)

Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777 (1935)

Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques (French). Bol. Soc. Mat. S~ao Paulo 8, 1–79 (1953)

Holenstein, T.: Parallel repetition: simplifications and the no-signaling case. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing STOC 2007, New York: Assoc. for Computing Machinery, 2007

Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP = PSPACE. http://arXiv.org./abs/0907.4737v2 [quant-ph], 2009

Junge, M.: Factorization theory for Spaces of Operators. Habilitationsschrift Kiel, 1996; see also: http://www.math.uiuc.edu/∼mjunge/publish.html

Junge, M., Parcet, J.: Rosenthal's theorem for subspaces of noncommutative Lp. Duke Math. J. 141, 75–122 (2008)

Junge, M., Parcet, J.: Mixed-norm inequalities and operator space Lp embedding theory. Mem. Amer. Math. Soc. 952 (2010)

Junge, M., Parcet, J.: A transference method in quantum probability. Adv. Math. 225, 389–444 (2010)

Junge, M., Parcet, J., Xu, Q.: Rosenthal type inequalities for free chaos. Ann. Probab. 35, 1374–1437 (2007)

Kempe, J., Regev, O., Toner, B.: The Unique Games Conjecture with Entangled Provers is False. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), Los Alamitos, CA: IEEE, 2008

Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled games are hard to approximate. http://arXiv.org/abs/0704.2903v2 [quant-ph], 2007

Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1. In: Proc. 46th IEEE Symp. on Foundations of Computer Science, Los Alamitos, CA: IEEE, 2005, pp. 53–62

Kraus B. Gisin N.Renner, R.: Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)

Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Berlin-Heidelberg-New York: Springer-Verlag, 1991

Marcus, M.B., Pisier, G.: Random Fourier series with applications to Harmonic Analysis. Annals of Math. Studies, 101, Princeton, NJ: Princeton Univ. Press, 1981

Masanes, Ll., Renner, R., Winter, A., Barrett, J., Christandl, M.: Security of key distribution from causality constraints. http://arXiv.org/abs/quant-ph/0606049v4 (2006)

Masanes, L.: Universally-composable privacy amplification from causality constraints. Phys. Rev. Lett. 102, 140501 (2009)

Massar, S.: Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002)

Massar, S., Pironio. S.: Violation of local realism vs detection efficiency. Phys. Rev. A 68, 062109 (2003)

Paulsen, V.I.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78, Cambridge: Cambridge University Press, 2003

Pearle, P.M.: Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418 (1970)

Pérez-García, D., Wolf, M.M., Palazuelos, C., Villanueva, I., Junge, M.: Unbounded violation of tripartite Bell inequalities. Commun. Math. Phys. 279(2), 455–486 (2008)

Pisier, G.: An Introduction to Operator Spaces. London Math. Soc. Lecture Notes Series 294, Cambridge: Cambridge University Press, 2003

Pisier, G.: The volume of convex bodies and Banach Space Geometry. Cambridge: Cambridge University Press, 1989

Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS 60, Providence, RI: Amer. Math. Soc., 1986

Pitowsky, I.: New Bell inequalities for the singlet state: Going beyond the Grothendieck bound. J. Math. Phys. 49, 012101 (2008)

Rao, A.: Parallel repetition in projection games and a concentration bound. In: 40th STOC Proc, STOC2008, New York: Assoc. for Computing Machinery, 2008

Raz, R.: A Parallel Repetition Theorem. SIAM J. Comp. 27, 763–803 (1998)

Shor, P.W., Preskill, J.: Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Phys. Rev. Lett. 85, 441–444 (2000)

Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, London: Longman Scientific and Technical, 1989

Tsirelson, B.S.: Hadronic Journal Supplement 84, 329–345 (1993)

Vertesi, T., Pal, K.F.: Bounding the dimension of bipartite quantum systems. Phys. Rev. A 79, 042106 (2009)

Wehner, S., Christandl, M., Doherty, A.C.: A lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78, 062112 (2008)

Werner, R.F., Wolf, M.M.: Bell inequalities and Entanglement. Quant. Inf. Comp. 1(3), 1–25 (2001)

Wolf, M.M., Pérez-García, D.: Assessing dimensions from evolution. Phys. Rev. Lett. 102, 190504 (2009)

Depositado:09 Jul 2010 08:36
Última Modificación:09 Dic 2014 09:13

Sólo personal del repositorio: página de control del artículo