Biblioteca de la Universidad Complutense de Madrid

Extension of multilinear operators on Banach spaces

Impacto



Villanueva, Ignacio y Cabello Sánchez, Félix y Garcia, R. (2001) Extension of multilinear operators on Banach spaces. Extracta Mathematicae, 15 (2). pp. 291-334. ISSN 0213-8743

[img]
Vista previa
PDF
333kB

URL Oficial: http://www.unex.es/extracta/extracta.html



Resumen

This paper considers the problem of extending multilinear forms on a Banach space X to a larger space Y containing it as a closed subspace. For instance, if X is a subspace of Y and X0 ! Y 0 extends linear forms, then the induced Nicodemi operators extend multilinear forms. It is shown that an extension operator X0 ! Y 0 exists if and only if X is locally complemented in Y . Also, these extension operators preserve the symmetry if and only if X is regular. Finally, multlinear characterizations are obtained of some classical Banach space properties (Dunford-Pettis, etc.) related to weak compactness in terms of operators having Z-valued Aron-Berner extensions.


Tipo de documento:Artículo
Palabras clave:Dunford-Pettis; Extending multilinear forms; Nicodemi operators; Extension operator; Locally complemented; Multlinear characterizations; Banach space properties; Weak compactness; Z-valued Aron-Berner extensions
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:11524
Depositado:15 Nov 2010 12:28
Última Modificación:06 Feb 2014 09:05

Sólo personal del repositorio: página de control del artículo