Villanueva, Ignacio y Pérez García, David (2004) Where do homogeneous polynomials on ln1 attain their norm? Journal of Approximation Theory, 127 (1). pp. 124-133. ISSN 1096-0430
![]()
|
PDF
185kB |
URL Oficial: http://www.sciencedirect.com/science/journal/00219045
Resumen
Using a ‘reasonable’ measure in , the space of 2-homogeneous polynomials on ℓ1n, we show the existence of a set of positive (and independent of n) measure of polynomials which do not attain their norm at the vertices of the unit ball of ℓ1n. Next we prove that, when n grows, almost every polynomial attains its norm in a face of ‘low’ dimension.
Tipo de documento: | Artículo |
---|---|
Palabras clave: | Polynomials; Extreme points; Convex polytopes; Vertices; Faces |
Materias: | Ciencias > Matemáticas > Análisis matemático |
Código ID: | 11658 |
Depositado: | 01 Dic 2010 11:08 |
Última Modificación: | 08 Feb 2016 15:34 |
Descargas en el último año
Sólo personal del repositorio: página de control del artículo