Villanueva, Ignacio and Peralta Pereira, Antonio Miguel (2006) The alternative DunfordPettis property on projective tensor products. Mathematische Zeitschrift, 252 (4). pp. 883897. ISSN 00255874

PDF
227kB 
Official URL: http://www.springerlink.com/content/c6331jk545v12345/
Abstract
A Banach space X has the Dunford–Pettis property (DPP) if and only if whenever (xn) and (pn) are weakly null sequences in X and X*, respectively, we have pn(xn)→ 0. Freedman introduced a stricly weaker version of the DPP called the alternative Dunford–Pettis property (DP1). A Banach space X has the DP1 if whenever xn ! x weakly in X, with kxnk = kxk, and (xn) is weakly null in X*, we have that xn(xn)→ 0. The authors study the DP1 on projective tensor products of C*algebras and JB*triples. Their main result, Theorem 3.5, states that if X and Y are Banach spaces such that X
contains an isometric copy of c0 and Y contains an isometric copy of C[0, 1], then Xˆ_Y , the projective tensor product of X and Y , does not have the DP1. As a corollary, they get that if X and Y are JB*triples such that X is not reflexive and Y contains `1, then Xˆ_Y does not have the DP1. Furthermore, if A and B are infinitedimensional
C*algebras, then Aˆ_B has the DPP if and only if Aˆ_B has the DP1 if and only if both A and B have the DPP and do not contain `1.
Item Type:  Article 

Uncontrolled Keywords:  RandonNikodym property; JB*triples; Jordan triples; Banachspaces; Startriples; Algebras 
Subjects:  Sciences > Mathematics > Mathematical analysis 
ID Code:  11675 
Deposited On:  02 Dec 2010 12:55 
Last Modified:  06 Feb 2014 09:08 
Repository Staff Only: item control page