Biblioteca de la Universidad Complutense de Madrid

The inverse eigenvalue problem for quantum channels

Impacto



Wolf, Michael y Pérez García, David (2010) The inverse eigenvalue problem for quantum channels. (Presentado)

[img] PDF
363kB

URL Oficial: http://arxiv.org/abs/1005.4545



Resumen

Given a list of n complex numbers, when can it be the spectrum of a quantum channel, i.e., a completely positive trace preserving map? We provide an explicit solution for the n=4 case and show that in general the characterization of the non-zero part of the spectrum can essentially be given in terms of its classical counterpart - the non-zero spectrum of a stochastic matrix. A detailed comparison between the classical and quantum case is given. We discuss applications of our findings in the analysis of time-series and correlation functions and provide a general characterization of the peripheral spectrum, i.e., the set of eigenvalues of modulus one. We show that while the peripheral eigen-system has the same structure for all Schwarz maps, the constraints imposed on the rest of the spectrum change immediately if one departs from complete positivity.


Tipo de documento:Artículo
Palabras clave:Física matemática, Teoría cuántica, Teoría espectral, Quantum Physics, Mathematical Physics, Spectral Theory
Materias:Ciencias > Física > Física matemática
Ciencias > Física > Teoría de los quanta
Código ID:12156
Depositado:03 Feb 2011 08:33
Última Modificación:04 Dic 2014 10:26

Sólo personal del repositorio: página de control del artículo