E-Prints Complutense

A canonical form for Projected Entangled Pair States and applications

Impacto

Descargas

Último año



Sanz, Mikel y Pérez García, David y Cirac, Juan I. y Wolf, Michael y González Guillén, Carlos Eduardo (2009) A canonical form for Projected Entangled Pair States and applications. New Journal of Physics . ISSN 1367-2630

[img]
Vista previa
PDF
571kB

URL Oficial: http://arxiv.org/abs/0908.1674



Resumen

We show that two different tensors defining the same translational invariant injective Projected Entangled Pair State (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.


Tipo de documento:Artículo
Palabras clave:Teoría cuántica, Física matemática, Quantum Physics, Mathematical Physics
Materias:Ciencias > Física > Física matemática
Ciencias > Física > Teoría de los quanta
Código ID:12163
Depositado:03 Feb 2011 10:00
Última Modificación:03 Dic 2014 08:41

Descargas en el último año

Sólo personal del repositorio: página de control del artículo