Biblioteca de la Universidad Complutense de Madrid

Every closed convex set is the set of minimizers of some C1-smooth convex function

Impacto



Azagra Rueda, Daniel y Ferrera Cuesta, Juan (2002) Every closed convex set is the set of minimizers of some C1-smooth convex function. Proceedings of the American Mathematical Society, 130 (12). pp. 3687-3692. ISSN 1088-6826

[img]
Vista previa
PDF
280kB

URL Oficial: http://www.ams.org/proc/



Resumen

The authors show that for every closed convex set C in a separable Banach space there is a nonnegative C1 convex function f such that C = {x: f(x) = 0}. The key is to show this for a closed halfspace. This result has several attractive consequences. For example, it provides an easy proof that every closed convex set is the Hausdorff limit of infinitely smooth convex bodies (Cn := {x: f(x) _ 1/n}) and that every continuous convex function is the Mosco limit of C1 convex functions.


Tipo de documento:Artículo
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:12354
Depositado:07 Mar 2011 12:04
Última Modificación:06 Feb 2014 09:23

Sólo personal del repositorio: página de control del artículo