Biblioteca de la Universidad Complutense de Madrid

The Semigroup of a Quasi-ordinary Hypersurface

Impacto



González Pérez, Pedro Daniel (2003) The Semigroup of a Quasi-ordinary Hypersurface. Journal of the Institute of Mathematics of Jussieu, 2 (3). pp. 383-399. ISSN 1475-3030

[img] PDF
230kB

URL Oficial: http://www.journals.cambridge.org/journal JournaloftheInstituteofMathematicsofJussieu



Resumen

An analytically irreducible hypersurface germ (S, 0) ⊂ (Cd+1, 0) is quasi-ordinary if it canbe defined by the vanishing of the minimal polynomial f ∈ C{X}[Y ] of a fractional power series in the variables X = (X1, . . . , Xd) which has characteristic monomials, generalizing the classical Newton–Puiseux characteristic exponents of the plane-branch case (d = 1). We prove that the set of vertices of Newton polyhedra of resultants of f and h with respect to the indeterminate Y , for those polynomials h which are not divisible by f, is a semigroup of rank d, generalizing the classical semigroup appearing in the plane-branch case.We show that some of the approximate roots of the polynomial f are irreducible quasiordinary polynomials and that, together with the coordinates X1, . . . , Xd, provide a set of generators of the semigroup from which we can recover the characteristic monomials and vice versa. Finally, we prove that the semigroups corresponding to any two parametrizations of (S, 0) are isomorphic and that this semigroup is a complete invariant of the embedded topological type of the germ (S, 0) as characterized by the work of Gau and Lipman.


Tipo de documento:Artículo
Palabras clave:Quasi-ordinary singularities; Topological type; Semigroup; Discriminant
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:12525
Depositado:04 Abr 2011 15:50
Última Modificación:04 Abr 2011 15:50

Sólo personal del repositorio: página de control del artículo