Biblioteca de la Universidad Complutense de Madrid

Geometric motivic Poincaré series of quasi-ordinary singularities

Impacto



González Pérez, Pedro Daniel y Cobo Pablos, Maria Helena (2010) Geometric motivic Poincaré series of quasi-ordinary singularities. Mathematical Proceedings of the Cambridge Philosophical Society, 149 (1). pp. 49-74. ISSN 1469-8064

[img]
Vista previa
PDF
262kB

URL Oficial: http://www.journals.cambridge.org/journal_MathematicalProceedingsoftheCambridgePhilosophicalSociety



Resumen

Geometric motivic Poincaré series of a germ at a singular point of complex algebraic variety describes the truncated images of the space of arcs through the singular point. Denef and Loeser proved that it has a rational form. In this paper, the authors study an irreducible germ of quasi-ordinary hypersurface singularities and introduce the notion of logarithmic Jacobian ideals. The main result of this paper is to give the explicit rational form of geometric motivic Poincaré series of such a singularity in terms of the lattice and the Newton polyhedra of the logarithmic Jacobian ideals.


Tipo de documento:Artículo
Palabras clave:Arc space; Quasi-ordinary singularities
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:12581
Depositado:13 Abr 2011 08:43
Última Modificación:06 Feb 2014 09:27

Sólo personal del repositorio: página de control del artículo