Biblioteca de la Universidad Complutense de Madrid

Degenerations of K3 surfaces in projective space

Impacto

Gallego Rodrigo, Francisco Javier y Purnaprajna, Bangere P. (1997) Degenerations of K3 surfaces in projective space. Transactions of the American Mathematical Society, 349 (6). pp. 2477-2492. ISSN 1088-6850

[img]
Vista previa
PDF
307kB

URL Oficial: http://www.ams.org/publications/journals/journalsframework/tran




Resumen

A K3 carpet S is a double structure on a rational normal scroll such that its dualizing sheaf is trivial and h1(OS) = 0.
In this note the authors show that every K3 carpet S can be smoothed, i.e. there exists a flat family over a smooth curve with smooth generic fiber and with a special closed fiber isomorphic top S.
Moreover, they study the Hilbert scheme of numerical K3 surfaces at the locus parametrizing K3 carpets, characterizing those K3 carpets whose corresponding Hilbert point is smooth.
The proof is based on the properties of the hyperelliptic linear systems on K3 surfaces.


Tipo de documento:Artículo
Información Adicional:

First published in Transactions of the American Mathematical Society in Volume 349, Number 6, June 1997, published by the American Mathematical Society

Palabras clave:K3 carpets, Rational normal scrolls, Degenerations, Hilbert scheme
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:12602
Depositado:25 Abr 2011 21:04
Última Modificación:06 Feb 2014 09:28

Sólo personal del repositorio: página de control del artículo