Biblioteca de la Universidad Complutense de Madrid

Very ampleness and higher syzygies for Calabi-Yau threefolds


Gallego Rodrigo, Francisco Javier y Purnaprajna, Bangere P. (1998) Very ampleness and higher syzygies for Calabi-Yau threefolds. Mathematische Annalen, 312 . 133 -149. ISSN 0025-5831

[img] PDF

URL Oficial:


The authors prove various results concerning multiples of ample, base-point-free linear systems on Calabi-Yau threefolds. Suppose that B is an ample divisor on a Calabi-Yau threefold X, and that |B| has no base-points. Then the authors prove that 3B is very ample and embeds X as a projectively normal variety if and only if |B| does not map X 2:1 onto P3. Similarly, they prove that |2B| enjoys the same properties if and only if |B| does not map X onto a variety of minimal degree other than P3, nor maps X 2:1 onto P3. Further results are proved, giving conditions for when the linear system nB satisfies the condition Np.

Tipo de documento:Artículo
Palabras clave:Projective varieties, Koszul cohomology, K-3 surfaces
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:12604
Depositado:25 Abr 2011 21:02
Última Modificación:25 Abr 2011 21:02

Sólo personal del repositorio: página de control del artículo