Universidad Complutense de Madrid
E-Prints Complutense

Lindelöf spaces C(X) over topological groups



Último año

Kąkol, Jerzy y López Pellicer, Manuel y Martín Peinador, Elena y Tarieladze, Vaja (2008) Lindelöf spaces C(X) over topological groups. Forum Mathematicum, 20 (2). pp. 201-212. ISSN 0933-7741

Vista previa

URL Oficial: http://www.degruyter.com/journals/forum/detailEn.cfm


Theorem 1 proves (among the others) that for a locally compact topological group X the following assertions are equivalent: (i) X is metrizable and sigma-compact. (ii) C-p(X) is analytic. (iii) C-p(X) is K-analytic. (iv) C-p(X) is Lindelof. (v) C-c(X) is a separable metrizable and complete locally convex space. (vi) C,(X) is compactly dominated by irrationals. This result supplements earlier results of Corson, Christensen and Calbrix and provides several applications, for example, it easily applies to show that: (1) For a compact topological group X the Eberlein, Talagrand, Gul'ko and Corson compactness are equivalent and any compact group of this type is metrizable. (2) For a locally compact topological group X the space C-p(X) is Lindelof iff C-c(X) is weakly Lindelof. The proofs heavily depend on the following result of independent interest: A locally compact topological group X is metrizable iff every compact subgroup of X has countable tightness (Theorem 2). More applications of Theorem 1 and Theorem 2 are provided.

Tipo de documento:Artículo
Palabras clave:Locally convex-spaces; Banach-spaces; Compact-groups; Property; Sets
Materias:Ciencias > Matemáticas > Topología
Código ID:12712
Depositado:13 May 2011 11:14
Última Modificación:06 Feb 2014 09:30

Descargas en el último año

Sólo personal del repositorio: página de control del artículo