Biblioteca de la Universidad Complutense de Madrid

Logarithmic Jacobian ideals, quasi-ordinary hypersurfaces and equisingularity

Impacto



González Pérez, Pedro Daniel (2008) Logarithmic Jacobian ideals, quasi-ordinary hypersurfaces and equisingularity. (No publicado)

[img]
Vista previa
PDF
381kB


Resumen

We describe the jacobian ideal of the fibers St of an equiresolvable deformation of a quasi-ordinary hypersurface singularity (S, 0). This kind of deformation, inspired by the work of Teissier, has generic _ber isomorphic to (S, 0) and special fiber a toric singularity. We show a formula, in terms of the logarithmic jacobian ideal, for the pull-back of the jacobian ideal of St in its normalization. The logarithmic jacobian ideal is studied in the normal toric case by Lejeune and Reguera in relation with the study of motivic invariants and arc spaces. We deduce some equisingularity properties of the normalized Nash modification of St.


Tipo de documento:Artículo
Palabras clave:Jacobian ideal, Logarithmic jacobian ideal, Toric singularities, Quasi-ordinary singularities, Nash modification, Equisingularity.
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:12721
Depositado:20 May 2011 11:33
Última Modificación:15 Sep 2015 09:04

Sólo personal del repositorio: página de control del artículo