Puente Muñoz, Maria Jesus de la (2002) Real Plane Algebraic Curves. Expositiones Mathematicae, 20 (4). pp. 291314. ISSN 07230869

PDF
1MB 
Official URL: http://www.sciencedirect.com/science/journal/07230869
Abstract
This paper provides an elementary exposition of affine and projective real plane curves. Where possible, elementary proofs are given, but to some extent, one must make use of results from algebraic geometry (over the complex numbers) and real algebraic geometry. The bulk of the paper discusses algebraic aspects of affine and projective curves, but there is a short section at the end on topological aspects. A major theme of the paper is that real affine curves VR(f) with f an indefinite polynomial in R[X, Y ] have similar properties to complex affine curves,
but semidefinite polynomials give rise to much different behavior. Many examples are given to illustrate the concepts.
Item Type:  Article 

Uncontrolled Keywords:  Minimal polynomial; Topological properties 
Subjects:  Sciences > Mathematics > Algebraic geometry 
ID Code:  12799 
Deposited On:  01 Jun 2011 11:28 
Last Modified:  06 Feb 2014 09:32 
Repository Staff Only: item control page