Biblioteca de la Universidad Complutense de Madrid

Concentration of Symmetric Eigenfunction

Impacto



Azagra Rueda, Daniel y Macia Lang , Fabricio (2010) Concentration of Symmetric Eigenfunction. Nonlinear Analysis: Theory, Methods & Applications , 73 (3). pp. 683-688. ISSN 0362-546X

[img]
Vista previa
PDF
174kB

URL Oficial: http://www.elsevier.com/locate/na



Resumen

In this article we examine the concentration and oscillation effects developed by high-frequency eigenfunctions of the Laplace operator in a compact Riemannian manifold. More precisely, we are interested in the structure of the possible invariant semiclassical measures obtained as limits of Wigner measures corresponding to eigenfunctions. These measures describe simultaneously the concentration and oscillation effects developed by a sequence of eigenfunctions. We present some results showing how to obtain invariant semiclassical measures from eigenfunctions with prescribed symmetries. As an application of these results, we give a simple proof of the fact that in a manifold of constant positive sectional curvature, every measure which is invariant by the geodesic flow is an invariant semiclassical measure.


Tipo de documento:Artículo
Palabras clave:Eigenfunctions of the Laplacian; Semiclassical measures; Wigner distributions; Manifolds of constant sectional curvature; Invariant measures
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:12910
Depositado:12 Jul 2011 07:15
Última Modificación:06 Feb 2014 09:36

Sólo personal del repositorio: página de control del artículo