Biblioteca de la Universidad Complutense de Madrid

Exact Filling of Figures with the Derivatives of Smooth Mappings Between Banach Spaces

Impacto



Azagra Rueda, Daniel y Fabián, M. y Jiménez Sevilla, María del Mar (2005) Exact Filling of Figures with the Derivatives of Smooth Mappings Between Banach Spaces. Canadian Mathematical Bulletin, 48 (4). pp. 481-499. ISSN 0008-4395

[img]
Vista previa
PDF
275kB

URL Oficial: http://cms.math.ca/cmb/



Resumen

We establish sufficient conditions on the shape of a set A included in
the space Ln s (X; Y ) of the n-linear symmetric mappings between Banach spaces
X and Y , to ensure the existence of a Cn-smooth mapping f : X ¡! Y , with bounded support, and such that f(n)(X) = A, provided that X admits a Cn- smooth bump with bounded n-th derivative and densX = densLn(X; Y ). For instance, when X is infinite-dimensional, every bounded connected and open set U containing the origin is the range of the n-th derivative of such a mapping.
The same holds true for the closure of U, provided that every point in the boundary of U is the end point of a path within U. In the finite-dimensional case, more restrictive conditions are required. We also study the Fr´echet smooth case for mappings from Rn to a separable infinite-dimensional Banach space and the Gˆateaux smooth case for mappings defined on a separable infinite-dimensional
Banach space and with values in a separable Banach space.


Tipo de documento:Artículo
Palabras clave:Starlike Bodies; Range; Theorem; Bump
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:12927
Depositado:11 Jul 2011 08:06
Última Modificación:06 Feb 2014 09:36

Sólo personal del repositorio: página de control del artículo