Complutense University Library

Partial least squares (PLS)methods: origins, evolution and application to social sciences

Mateos-Aparicio Morales, Gregoria (2011) Partial least squares (PLS)methods: origins, evolution and application to social sciences. Communications in Statistics - Theory and Methods, 40 (13). pp. 2305-2317. ISSN 0361-0926 print/1532-415X online

[img] PDF
118kB

Official URL: http://dx.doi.org/10.1080/03610921003778225

View download statistics for this eprint

==>>> Export to other formats

Abstract

This article attempts to clarify some of the existing doubts about PLS methods and in an integrative capacity, allow them to be better understood. The historical evolution included here starts by describing the prior knowledge which led the originator of partial least squares (PLS), the Swedish professor Herman Wold, to develop PLS techniques. Next, the emergence of PLS Regression is described. After that, the parallel development of PLS-Path Modeling, the PLS approach for structural equation modeling, is presented. Lastly, the different algorithms and software are listed and a description is given of how PLS-Path Modeling has been implemented in social sciences


Item Type:Article
Additional Information:

To cite this Article: Mateos-Aparicio, Gregoria(2011) 'Partial Least Squares (PLS) Methods: Origins, Evolution, and Application to Social Sciences', Communications in Statistics - Theory and Methods, 40: 13, 2305 — 2317

To link to this Article: DOI: 10.1080/03610921003778225
URL: http://dx.doi.org/10.1080/03610921003778225

Uncontrolled Keywords:Evolution, Origins, Partial Least Squares Regression, PLS methods, PLS-Path Modeling.
Subjects:Sciences > Statistics > Multivariate analysis
ID Code:13208
References:

[1] Abdi, H. (2003). Partial least squares regression (PLS-regression). In M. Lewis-Beck, A. Bryman, T. Futing (Eds): Encyclopedia for research methods for the social sciences. Thousand Oaks (CA), Sage,. pp. 792-795.

[2] Caballero Domínguez, Antonio J. (2006) “SEM vs. PLS: Un enfoque basado en la práctica”, IV Congreso de Metodología de Encuestas. Universidad Pública de Navarra.

[3] Chin, W. W. (1993-2003). PLS Graph – Version 3.0. Soft Modeling Inc.

[4] Chin, W.W. (1998): "The Partial Least Squares Approach to Structural Equation Modeling", in G.A. Marcoulides [ed.]. Modern Methods for Business Research, pp. 295-336. Mahwah, NJ: Lawrence Erlbaum Associates, Publisher.

[5] Chin, W. W. (2000). Frequently Asked Questions –Partial Least Squares & PLSGraph. Home Page.[On-line].

Available: http://disc-nt.cba.uh.edu/chin/plsfaq.htm.

[6] Chin, W.W. (2004). PLS-Graph. Version 3.00., Texas (USA). University of Houston.

[7] Falk, R.F. Miller; N.B. (1992). A Primer for Soft Modeling. Akron, Ohio. The University of Akron.

[8] Fornell, C. (1982) "A Second Generation of Multivariate Analysis: An Overview", in C. Fornell [ed.] A Second Generation of Multivariate Analysis, 1, 1-21. New York, Praeger Publishers.

[9] Fornell, C.; Bookstein, F.L. (1982). "A Comparative Analysis of Two Structural Equation Models: LISREL and PLS Applied to Market Data", in C. Fornell [ed.]. A Second Generation of Multivariate Analysis, 1, 289-324. New York, Praeger Publishers.

[10] Fornell, C. and Cha, J. (1994) "Partial Least Squares" in Advanced Methods of Marketing Research. Edited by R.P. Bagozzi. Cambridge, USA, Blackwell Publishers, p.52.

[11] Fu, J.-R. (2006a). VisualPLS – Partial Least Square (PLS) Regression. An Enhanced GUI for LVPLS (PLS 1.8 PC) Version 1.04. Taiwan, ROC, National Kaohsiung University of Applied Sciences, http://www2.kuas.edu.tw/prof/fred/vpls/index.html.

[12] Gani, J.(ed.) (1982). The Making of Statisticians. New York, Springer-Verlag, p.189.

[13] Geladi, P. (1988) "Notes on the History and Nature of Partial Least Squares (PLS) Modeling", Journal of Chemometrics, 2: 231-246.

[14] Jöreskog, K. G. (1973). "A General Method for Estimating a Linear Structural Equation System". In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). London, Academic Press.

[15] Jöreskog, K.G.; Wold, H. (1982): Systems under Indirect Observation – Causality Structure Prediction. Amsterdam, North Holland Publishing Company.

[16] Jöreskog Karl G & Sörbom Dag. 1993. LISREL 8 and PRELIS 2. User´s Reference Guide. SSI. Scientific Software International.

[17] Li, Y. (2005). PLS-GUI – Graphic User Interface for Partial Least Squares. PLSPC 1.8. Version 2.0.1 beta. Columbia, SC, University of South Carolina.

[18] Lohmöller, J.B. (1984). LVPLS Program Manual. Version 1.6. Latent Variables Path Analysis with Partial Least-Squares Estimation. Köln Zentralarchiv für Empirische Sozialforschung, Universität zu Köln.

[19] Mulaik, S.A. (1986). "Factor Analysis and Psychometrika: Major Developments" Psychometrika, Vol. 51, No. 1.

[20] Ringle, C. M., Wende, S., and Will, A. (2005). SmartPLS – Version 2.0. Universitat Hamburg, Hamburg.

[21] Sellin, N. (1989). PLSPATH - Version 3.01. Application Manual. Hamburg. Universitat Hamburg.

[22] Tenenhaus, M. (1998). La régression PLS. Paris, Technip.

[23] M. Tenenhaus et al. (2005). "PLS Path Modeling" Computational Statistics & Data Analysis, 48, p.160.

[24] Test&Go (2006). Spad Version 6.0.0. Paris, France.

[25] Valencia, J.L.; Diaz-Llanos, F.J. Regresión PLS en las Ciencias Experimenta es. Madrid, Editorial Complutense, 2003, p.3.

[26] Wold, H. (1938). A Study in the Analysis of Stationary Time Series. (2nd ed 1954, with appendix by P. Whittle). Stockholm, Almqvist and Wiksell.

[27] Wold, H.O.A; Jureen, L. (1952). Demand Analysis: A Study in Econometrics. Stockholm: Almqvist and Wiksell, also New York: Wiley, 1953.

[28] Wold, H. (1952) "Ordinal preferences or cardinal utility?". Econometrica, vol. 20, No.4, pp 661-664.

[29] Wold, H. (1966). "Estimation of principal components and related models by iterative least squares". In P.R. Krishnaiaah (Ed.). Multivariate Analysis., New York,

Academic Press. pp.391-420.

[30] Wold, H. (1973). "Aspects opératoires des modèles économétriques et sociologiques. Développement actuel de l'estimation "F.P." (Point fixe) et de la modélisation "NIPALS" (linéarisation par itération de moindres carrés partiels)". Économie Appliquée N° 2-3-4: 389-421.

[31] Wold, H. (1973). "Nonlinear Iterative Partial Least Squares (NIPALS) Modeling: Some Current Developments", in P.R. Krishnaiah [ed.]. Multivariate Analysis II, Proceedings of an International Symposium on Multivariate Analysis held at Wright State University, Dayton, Ohio, June 19-24, 1972, New York: Academic Press, pp. 383-407.

[32] Wold, H. (1979). Model Construction and Evaluation when Theoretical Knowledge Is Scarce: An Example of the Use of Partial Least Squares. Cahiers du Département D´Économétrie. Genève, Faculté des Sciences Économiques et

Sociales, Université de Genève.

[33] Wold, H. (1980): "Soft Modeling: Intermediate between Traditional Model Building and Data Analysis", Mathematical Statistics, 6, pp. 333-346.

[34] Wold, H. (1982). Soft modeling: the basic design and some extensions. In K.G. Jöreskog & H. Wold (Eds.) Systems under indirect observations: Causality, structure, prediction. Part 2, Amsterdam, North-Holland, pp.1-54.

[35] Wold H. (1985). "Partial Least Squares", in S. Kotz and N. L. Johnson (Eds.), Encyclopedia of Statistical Sciences (vol. 6), New York, Wiley, pp. 581-591.

[36] Wold, Svante (1997). "Wold, Herman Ole Andreas". In Leading Personalities in Statistical Sciences. From the seventeenth century to the present. Johnson, N.L. and Kotz, S. (eds.) Wiley, New York, p.213.

[37] Wold, S. (2001). "Personal memories of the early PLS development". Chemometrics and Intelligent Laboratory Systems, 58, 83–84.

[38] Wolfle, Lee M. (2003) "The Introduction of Path Analysis to the Social Sciences, and Some Emergent Themes: An Annotated Bibliography". Structural Equation Modeling, 10 (1), p.2.

[39] Wright, S. (1918). On the nature of size factors. Genetics, 3, 367-374.

Deposited On:23 Feb 2012 10:05
Last Modified:23 Feb 2012 10:05

Repository Staff Only: item control page