Biblioteca de la Universidad Complutense de Madrid

Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity

Impacto



Arrieta Algarra, José María y Pardo San Gil, Rosa y Rodríguez Bernal, Aníbal (2007) Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 137 (2). pp. 225-252. ISSN 0308-2105

[img]
Vista previa
PDF
199kB

URL Oficial: http://journals.cambridge.org/action/displayJournal?jid=PRM




Resumen

We consider an elliptic equation with a nonlinear boundary condition which is asymptotically linear at infinity and which depends on a parameter. As the parameter crosses some critical values, there appear certain resonances in the equation producing solutions that bifurcate from infinity. We study the bifurcation branches, characterize when they are sub- or supercritical and analyse the stability type of the solutions. Furthermore, we apply these results and techniques to obtain Landesman–Lazer-type conditions guaranteeing the existence of solutions in the resonant case and to obtain an anti-maximum principle


Tipo de documento:Artículo
Palabras clave:Reaction-diffusion equations; Parabolic problems; Blow-up; Attractors
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:13211
Depositado:07 Sep 2011 07:02
Última Modificación:06 Feb 2014 09:43

Sólo personal del repositorio: página de control del artículo