Biblioteca de la Universidad Complutense de Madrid

On the size of the sets of gradients of Bump functions and starlike bodies on the Hilbert space

Impacto



Azagra Rueda, Daniel y Jiménez Sevilla, María del Mar (2002) On the size of the sets of gradients of Bump functions and starlike bodies on the Hilbert space. Bulletin de la Société Mathématique de France , 130 (3). pp. 337-347. ISSN 0037-9484

[img]
Vista previa
PDF
175kB

URL Oficial: http://smf4.emath.fr/Publications/Bulletin/



Resumen

We study the size of the sets of gradients of bump functions on the Hilbert space l(2), and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in l(2) can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space l(2) can be uniformly approximated by C-1 smooth Lipschitz functions psi so that the cones generated by the ranges of its derivatives psi'(l(2)) have empty interior. This implies that there are C-1 smooth Lipschitz bumps in l(2) so that the cones generated by their sets of gradients have empty interior. On the other hand, we construct C-1-smooth bounded starlike bodies A subset of l(2), which approximate the unit ball, so that the cones generated by the hyperplanes which are tangent to A have empty interior as well. We also explain why this is the best answer to the above questions that one can expect.


Tipo de documento:Artículo
Palabras clave:Gradient; Bump function; Starlike body; Rolles Theorem
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:13213
Depositado:06 Sep 2011 07:28
Última Modificación:06 Feb 2014 09:43

Sólo personal del repositorio: página de control del artículo