Biblioteca de la Universidad Complutense de Madrid

Monodromy conjecture for some surface singularities

Impacto



Melle Hernández, Alejandro y Artal Bartolo, Enrique y Cassou-Noguès, Pierrette y Luengo Velasco, Ignacio (2002) Monodromy conjecture for some surface singularities. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 35 (4). pp. 605-640. ISSN 0012-9593

[img]
Vista previa
PDF
415kB

URL Oficial: http://smf4.emath.fr/Publications/AnnalesENS/




Resumen

In this work we give a formula for the local Denef–Loeser zeta function of a superisolated singularity of hypersurface in terms of the local Denef–Loeser zeta function of the singularities of its tangent cone. We prove the monodromy conjecture for some surfaces singularities. These results are applied to the study of rational arrangements of plane curves whose Euler–Poincaré characteristic is three.


Tipo de documento:Artículo
Palabras clave:Topological zeta function; Monodromy conjecture; Local Denef-Loeser zeta function; Superisolated singularity of hypersurface; Rational arrangements of plane curves
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:13339
Depositado:29 Sep 2011 10:02
Última Modificación:06 Feb 2014 09:46

Sólo personal del repositorio: página de control del artículo