Biblioteca de la Universidad Complutense de Madrid

LFC bumps on separable Banach spaces

Impacto



Jiménez Sevilla, María del Mar y Sánchez González, Luis (2010) LFC bumps on separable Banach spaces. Journal of Mathematical Analysis and Applications, 365, N (1). pp. 315-319. ISSN 0022-247X

[img]
Vista previa
PDF
174kB

URL Oficial: http://www.sciencedirect.com/science/journal/0022247X



Resumen

In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.


Tipo de documento:Artículo
Palabras clave:Smooth bump functions; Locally depending on finitely many coordinates; Polyhedral banach spaces
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:13816
Referencias:

[1] R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898.

[2] M. Fabian, P. Habala, P. Hájek, V.M. Santalucía, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math. vol. 8, Springer-Verlag, New York, (2001).

[3] M. Fabian and V. Zizler, A note on bump functions that locally depend on finitely many coordinates, Bull. Austral. Math. Soc 56 (3) (1997), 447-451.

[4] V. P. Fonf, Polyhedral Banach spaces, Math. Notes Acad. Sci. USSR 30 (1981), 809-813.

[5] V. P. Fonf, Three characterizations of polyhedral Banach spaces, Ukrainian Math. J. 42 (9) (1990), 1145-1148.

[6] P. Hájek, Smooth norms that depend locally on finitely many coordinates, Proc. Amer. Math. Soc. 123 (12) (1995), 3817-3821.

[7] P. Hájek and V. Zizler, Functions locally dependent on finitely many coordinates, R. Acad. Cien. Serie A. Mat. 100 (1-2) (2006), 147-154.

[8] P. Hájek and M. Johanis, Smoothing of bump functions, J. Math. Anal. Appl. 338 (2008), 1131-1139.

[9] P. Hájek and M. Johanis, Polyhedrality in Orlicz Spaces, Israel J. Math. 168 (2008), 167-188.

[10] R. G. Haydon, Smooth functions and partitions of unity on certains Banach spaces, Quart. J. Math. Oxford. Ser. 47 (188) (1996), 455-468.

[11] M. Johanis, Locally at Banach spaces, Czechoslovak Math. J. 59 (134) (2009), no. 1, 273{284.

[12] W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, vol. 1, Elsevier, 2001.

[13] V. L. Klee, Polyhedral sections of convex bodies, Acta. Math. 103 (1969), 243-267.

[14] D. H. Leung, Some isomorphically polyhedral Orlicz sequence spaces, Israel J. Math. 87 (1994), 117-128.

[15] J. Pechanec, J. H. M. Whitfield and V. Zizler, Norms locally dependent on finitely many coordinates, An. Acad. Brasil. Ciênc. 53 (3) (1981), 415-417.

[16] H. Torunczyk, Smooth partitions of unity on some nonseparable Banach spaces, Studia Math. 46 (1973), 43-51.

Depositado:10 Nov 2011 12:32
Última Modificación:06 Feb 2014 09:54

Sólo personal del repositorio: página de control del artículo