Biblioteca de la Universidad Complutense de Madrid

Infinite resonant solutions and turning points in a problem with unbounded bifurcation

Impacto



Arrieta Algarra, José María y Pardo San Gil, Rosa María y Rodríguez Bernal, Aníbal (2010) Infinite resonant solutions and turning points in a problem with unbounded bifurcation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20 (9). 2885-2896 . ISSN 0218-1274

[img]
Vista previa
PDF
552kB

URL Oficial: http://www.worldscinet.com/ijbc/ijbc.shtml



Resumen

Summary: "We consider an elliptic equation −Δu+u=0 with nonlinear boundary conditions ∂u/∂n=λu+g(λ,x,u) , where (g(λ,x,s))/s→0 as |s|→∞ . In [Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 2, 225--252; MR2360769 (2009d:35194); J. Differential Equations 246 (2009), no. 5, 2055--2080; MR2494699 (2010c:35016)] the authors proved the existence of unbounded branches of solutions near a Steklov eigenvalue of odd multiplicity and, among other things, provided tools to decide whether the branch is subcritical or supercritical. In this work, we give conditions on the nonlinearity, guaranteeing the existence of a bifurcating branch which is neither subcritical nor supercritical, having an infinite number of turning points and an infinite number of resonant solutions.''


Tipo de documento:Artículo
Palabras clave:Bifurcation from infinity; Nonlinear boundary conditions; Steklov eigenvalues; Turning points; Resonant solutions
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:13907
Depositado:17 Nov 2011 08:14
Última Modificación:06 Feb 2014 09:55

Sólo personal del repositorio: página de control del artículo