Biblioteca de la Universidad Complutense de Madrid

Cascades of Hopf bifurcations from boundary delay

Impacto



Arrieta Algarra, José María y Cónsul, Neus y Oliva, Sergio M. (2010) Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and Applications , 361 (1). pp. 19-37. ISSN 0022-247X

[img]
Vista previa
PDF
300kB

URL Oficial: http://www.sciencedirect.com/science/journal/0022247X



Resumen

We consider a 1-dimensional reaction–diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u≡1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain.


Tipo de documento:Artículo
Palabras clave:Logistic equation; Periodic orbits; One space dimension; Nonlinear boundary conditions
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:13913
Depositado:18 Nov 2011 08:32
Última Modificación:06 Feb 2014 09:55

Sólo personal del repositorio: página de control del artículo