Biblioteca de la Universidad Complutense de Madrid

Quasi-Ordinary power series and their Zeta functions


Melle Hernández, Alejandro y Artal Bartolo, Enrique y Cassou-Noguès, Pierrette y Luengo Velasco, Ignacio (2005) Quasi-Ordinary power series and their Zeta functions. Memoirs of the American Mathematical Society , 178 (841). VI-85. ISSN 1947-6221

Vista previa

URL Oficial:


The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function Z(DL)(h,T) of a quasi-ordinary power series h of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent Z(DL)(h, T) = P(T)/Q(T) such that almost all the candidate poles given by Q(T) are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex R psi(h) of nearby cycles on h(-1)(0). In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if h is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.

Tipo de documento:Artículo
Palabras clave:Motivic; Topological and Igusa zeta functions; Monodromy; Quasi-ordinary singularities
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:13919
Depositado:18 Nov 2011 08:21
Última Modificación:06 Feb 2014 09:55

Sólo personal del repositorio: página de control del artículo