Biblioteca de la Universidad Complutense de Madrid

Integration over a space of non-parametrized arcs, and motivic analogues of the monodromy zeta function

Impacto



Melle Hernández, Alejandro y Gusein-Zade, Sabir Medgidovich y Luengo Velasco, Ignacio (2006) Integration over a space of non-parametrized arcs, and motivic analogues of the monodromy zeta function. Proceedings of the Steklov Institute of Mathematics, 252 (1). pp. 63-73. ISSN 1531-8605

[img]
Vista previa
PDF
206kB

URL Oficial: http://www.springerlink.com/content/119896/



Resumen

Notions of integration of motivic type over the space of arcs factorized by the natural C*-action and over the space of nonparametrized arcs (branches) are developed. As an application, two motivic versions of the zeta function of the classical monodromy transformation of a germ of an analytic function on ℂd are given that correspond to these notions. Another key ingredient in the construction of these motivic versions of the zeta function is the use of the so-called power structure over the Grothendieck ring of varieties introduced by the authors.


Tipo de documento:Artículo
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:13920
Depositado:18 Nov 2011 08:20
Última Modificación:06 Feb 2014 09:55

Sólo personal del repositorio: página de control del artículo