Baro González, Elías and Otero, Margarita (2010) On ominimal homotopy groups. Quarterly Journal of Mathematics , 61 (3). pp. 275289. ISSN 00335606

PDF
242kB 
Official URL: http://qjmath.oxfordjournals.org/content/by/year
Abstract
We work over an ominimal expansion of a real closed field. The ominimal homotopy groups of a definable set are defined naturally using definable continuous maps. We prove that any two semialgebraic maps which are definably homotopic are also semialgebraically homotopic. This result together with known results on semialgebraic homotopy allows us to develop an ominimal homotopy theory. In particular, we obtain ominimal versions of the Hurewicz theorems and the Whitehead theorem.
Item Type:  Article 

Uncontrolled Keywords:  Ominimal homotopy groups 
Subjects:  Sciences > Mathematics > Algebra 
ID Code:  14480 
References:  [1] E. Baro, Normal triangulations in ominimal structures, preprint, 15pp.,2007, www.uam.es/elias.baro/articulos.html. [2] E. Baro and M. Otero, Locally de nable homotopy, preprint, 33pp., 2008, www.uam.es/elias.baro/articulos.html. [3] A. Berarducci, M. Mamino and M. Otero, Higher homotopy of groups definable in ominimal structures, 2008 Preprint, arXiv:0809.4940 [math.LO]. [4] A. Berarducci and M. Otero, ominimal fundamental group, homology and manifolds, J. London Math. Soc. (2) 65 (2002), no. 2, 257270. [5] A. Berarducci and M. Otero, Transfer methods for ominimal topology, J. Symb. Log. 68 (2003) 785794. [6] L. van den Dries, Tame topology and ominimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998. [7] H. Delfs and M. Knebusch, Separation, retractions and homotopy extension in semialgebraic spaces, Paci_c J. Math. 114 (1984), no. 1, 4771. [8] H. Delfs and M. Knebusch, Locally semialgebraic spaces, Lecture Notes in Mathematics, 1173, SpringerVerlag, Berlin, 1985. [9] M.Edmundo and M. Otero, Definably compact abelian groups, J. Math.Log. 4 (2004), no. 2, 163180. [10] A. Hatcher, Algebraic topology, Cambridge University Press, 2002. [11] S. Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII Academic Press, New YorkLondon 1959. [12] A. Piekosz, Ominimal homotopy and generalized (co)homology, preprint, 2008. [13] A.Woerheide, Ominimal homology, PhD Thesis, University of Illinois at UrbanaChampaign, 1996. 
Deposited On:  30 Jan 2012 08:21 
Last Modified:  06 Feb 2014 10:02 
Repository Staff Only: item control page