Biblioteca de la Universidad Complutense de Madrid

Rolle’s Theorem and Negligibility of Points in Infinite Dimensional Banach Spaces

Impacto



Azagra Rueda, Daniel y Gómez Gil, Javier y Jaramillo Aguado, Jesús Ángel (1997) Rolle’s Theorem and Negligibility of Points in Infinite Dimensional Banach Spaces. Journal of Mathematical Analysis and Applications, 213 (2). pp. 487-495. ISSN 0022-247X

[img] PDF
401kB

URL Oficial: http://www.sciencedirect.com/science/journal/0022247X



Resumen

In this note we prove that if a differentiable function oscillates between y« and « on the boundary of the unit ball then there exists a point in the interior of the ball in which the differential of the function has norm equal or less than« . This kind of approximate Rolle’s theorem is interesting because an exact Rolle’s theorem does not hold in many infinite dimensional Banach spaces. A characterization of those spaces in which Rolle’s theorem does not hold is given within a large class of Banach spaces. This question is closely related to the existence of C1 diffeomorphisms between a Banach space X and X _ _04 which are the identity out of a ball, and we prove that such diffeomorphisms exist for every C1 smooth Banach space which can be linearly injected into a Banach space whose dual norm is locally uniformly rotund (LUR).


Tipo de documento:Artículo
Palabras clave:Rolle’s theorem in infinite-dimensional Banach spaces; Approximate Rolle’s theorem; Continuous norm whose dual norm is locally uniformly rotund; C1 bump function
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:14492
Referencias:

1. C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. PoZon. Sci. Sér. Sci. Math. 14 (1966), 27-31.

2. C. Bessaga and A. Pe1czynski, Selected tapies in infinite-dimensional topology, in "Monografie Matematyczne," PWN, Warsaw, 1975.

3. R Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, in "Pitman Monographs and Surveys in Pure and Applied Mathematics," VoL 64, Longman, Harlow, 1993.

4. T. Dobrowolski, Smooth and R-analytic negligibility of subsets and extension of homeomorphism in Banach spaces, Studia Math. 65 (1979), 115-139.

5. 1. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N S.) 1, No. 3 (1979),443-474.

6. M. Fabian, P. Hájek, and J Vanderwerff, On smooth variational principies in Banach spaces, 1. Math. Anal. Appl. 197 (1996), 153-172.

7. J Bés and J Ferrera, private communication.

8. J Ferrer, Rolle's theorem fails in 12 , Amer. Math. Month1y 103, No. 2 (1996), 161-165.

9. R R Phelps, Convex functions, monotone operators and differentiability, in "Lecture Notes in Mathematics," VoL 1364, Springer-Verlag, BerlinjNew York, 1993.

10. S. A. Shkarin, On Rolle's theorem in infinite-dimensional Banach spaces, Mat. Zametki 51, No. 3 (1992), 128-136.

Depositado:01 Feb 2012 09:41
Última Modificación:28 Ene 2016 16:01

Sólo personal del repositorio: página de control del artículo