Baro González, Elías (2011) On the ominimal LScategory. Israel Journal of mathematics, 185 (1). pp. 6176. ISSN 00212172

PDF
194kB 
Official URL: http://www.springerlink.com/content/00212172/
Abstract
We introduce the ominimal LScategory of definable sets in ominimal expansions of ordered fields and we establish a relation with the semialgebraic and the classical one. We also study the ominimal LScategory of definable groups. Along the way, we show that two definably connected definably compact definable groups G and H are definable homotopy equivalent if and only if L(G) and L(H) are homotopy equivalent, where L is the functor which associates to each definable group its corresponding Lie group via Pillay's conjecture.
Item Type:  Article 

Uncontrolled Keywords:  Ominimality; LScategory; Definable groups; Homotopy equivalences 
Subjects:  Sciences > Mathematics > Algebra 
ID Code:  14499 
References:  [1] E.Baro, Normal triangulations in ominimal structures, J. Symb. Log., 15pp. (in press). [2] E.Baro and M. Otero, On ominimal homotopy groups, Quart. J. Math., (2009), in press (doi: 10.1093/qmath/hap011), 15pp. [3] A.Berarducci, Ominimal spectra, in_nitesimal subgroups and cohomology, J. Symb. Log. 72 (2007), no. 4, 11771193. [4] A.Berarducci and M. Mamino, Equivariant homotopy of de_nable groups, eprint, arXiv:0905.1069, 2009. [5] A.Berarducci, M. Mamino and M. Otero, Higher homotopy of groups de_nable in ominimal structures, Israel J. Math, 13pp. (in press). [6] A.Berarducci, M. Otero, Y.Peterzil, A. Pillay, A descending chain condition for groups denable in ominimal structures, Annals of Pure and Applied Logic 134 (2005) 303313. [7] A.Borel, Sousgroupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J. (2) 13 (1961) 216240. [8] O. Cornea, G. Lupton, J. Oprea, D.Tanr_e, LusternikSchnirelmann Category, American Mathematical Society, Providence, 2003. [9] H.Delfs and M. Knebusch, Locally semialgebraic spaces, Lecture Notes in Mathematics, 1173, SpringerVerlag, Berlin, 1985. [10] L. van den Dries, Tame topology and ominimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998. [11] M.Edmundo and M. Otero, Definably compact abelian groups, J. Math. Log. 4 (2004), no. 2, 163180. [12] E. Hrushovski, Y.Peterzil and A. Pillay, Groups, measures, and the NIP, J.Amer. Math. Soc., 21 (2008), no.2, 563596. [13] E. Hrushovski, Y.Peterzil and A. Pillay, On central extensions and definably compact groups in ominimal structures, eprint, arXiv:0811.0089, 2008. [14] Y.Peterzil and C. Steinhorn, Definable compactness and definable subgroups of ominimal groups, J. London Math. Soc., vol. 59 (1999), no. 3, pp. 769786. [15] A. Pillay, Typedefinability, compact Lie groups, and ominimality, J. Math. Logic 4 (2004), 147162. [16] N. Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, N. J., 1951. 
Deposited On:  01 Feb 2012 15:30 
Last Modified:  06 Feb 2014 10:03 
Repository Staff Only: item control page