Biblioteca de la Universidad Complutense de Madrid

Approximate Rolle’s theorems for the proximal subgradient and the generalized gradient

Impacto



Azagra Rueda, Daniel y Ferrera Cuesta, Juan y López-Mesas Colomina, Fernando (2003) Approximate Rolle’s theorems for the proximal subgradient and the generalized gradient. Journal of Mathematical Analysis and Applications, 283 (1). pp. 180-191. ISSN 0022-247X

[img] PDF
4MB

URL Oficial: http://www.sciencedirect.com/science/journal/0022247X



Resumen

We establish approximate Rolle's theorems for the proximal subgradient and for the generalized gradient. We also show that an exact Rolle's theorem for the generalized gradient is completely false in all infinite-dimensional Banach spaces (even when they do not possess smooth bump functions).


Tipo de documento:Artículo
Palabras clave:Rolle theorem; Proximinal subspace; Generalized gradient
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:14501
Referencias:

[1] D. Azagra, Smooth negligibility and subdifferential ca1culus in Banach spaces, with applications, Ph.D. dissertation, Universidad Complutense de Madrid, October 1997.

[2] D. Azagra, R. Deville, Subdifferential Rolle's and mean value inequality theorems, Bull. Austral. Math. Soc. 56 (1997) 319-329.

[3] D. Azagra, J. Gómez, J.A. Jaramillo, Rolle's theorem and negligibility of points in infinite-dimensional Banach spaces, J. Math. Anal. Appl. 213 (1997) 487--495.

[4] D. Azagra, M. Jiménez-Sevilla, The failure of Rolle's theorem in infinite-dimensiOl1al Banach spaces, J. Funct. Anal. 182 (2001) 207-226.

[5] J. Bes, J. Ferrera, On a multidimensional version of Rolle's theorem, Publ. Dto. Análisis Mat. UCM 1 (1996/1997) 21-27.

[6] F.H. Clark, Yu.S. Ledyaev, R.J. Stem, P.R. Wolensk.i, Nonsmooth Analysis and Control Theory, in: Graduate Texts in Mathematics, Vol. 178, Springer, 1998.

[7] R. Deville, A mean value theorem for nondifferentiable mappings in Banach spaces, Serdica Math. J. 21 (1995) 59-66.

[8] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renorrnings in Banam Spaces, in: Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 64, 1993.

[9] 1. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979) 443-474.

[10] 1. Ferrer, Rolle's, theorem fail in [2, Amer. Math. Monthly 103 (1996) 161-165.

[11] G. Godefroy, Sorne remarks on subdifferential calculus, Rev. Mat. Complut. 11 (1998) 269-279.

[12] S.A. Shkarin, On Rolle's theorem in infinite-dimensional Banach espaces, transl. from Mat. Zametki 51 (1992) 128-136.

Depositado:01 Feb 2012 16:47
Última Modificación:20 Mar 2012 08:05

Sólo personal del repositorio: página de control del artículo