Complutense University Library

Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

Ronda Prieto, José Ignacio and Valdés Morales, Antonio and Gallego Bonet, Guillermo (2011) Autocalibration with the Minimum Number of Cameras with Known Pixel Shape. International Journal of Computer Vision . ISSN 0920-5691 (Print) 1573-1405 (Online) (Submitted)

[img] PDF
5MB
View download statistics for this eprint

==>>> Export to other formats

Abstract

We address the problem of the Euclidean upgrading of a projective calibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient. As a consequence, we propose an algorithm that performs a Euclidean upgrading with 5 ({theoretical minimum}) or more cameras with the knowledge of the pixel shape as the only constraint. We provide experiments with real images showing the good performance of the technique.

Item Type:Article
Uncontrolled Keywords:Camera autocalibration, Varying parameters, Square pixels, Three-dimensional reconstruction, Absolute Conic, Six Line Conic Variety
Subjects:Sciences > Computer science > Artificial intelligence
ID Code:14615
References:

1. Bôcher, M.: Introduction to Higher Algebra. Dover Phoenix Editions. Dover Publications (2004)

2. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

3. Carballeira, P., Ronda, J.I., Valdés, A.: 3d reconstruction with uncalibrated cameras using the six-line conic variety. In: ICIP, pp. 205–208. IEEE (2008)

4. Faugeras, O.: Stratification of 3-d vision: projective, affine, and metric representations. Journal of the Optical Society of America A 12, 46,548–4 (1995)

5. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: CVPR (2007)

6. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press (2003)

7. Hartley, R.I.: Estimation of relative camera positions for uncalibrated cameras. In: Proc. European Conference on Computer Vision, pp. 579–587. Springer-Verlag, London, UK (1992)

8. Heyden, A., Åström, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition. New York, USA (1997)

9. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)

10. Luong, Q.T., Viéville, T.: Canonical representations for the geometries of multiple projective views. Comput. Vis. Image Underst. 64, 193–229 (1996). DOI 10.1006/cviu.1996.0055. URL http://portal.acm.org/citation.cfm?id=235090.235091

11. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer (2003)

12. Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vision 8(2), 123–151 (1992). DOI http://dx.doi.org/10.1007/BF00127171. URL http://portal.acm.org/citation.cfm?id=144382

13. Pollefeys, M., Gool, L.V.: A stratified approach to metric selfcalibration. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 407–412 (1997). URL citeseer. ist.psu.edu/article/pollefeys97stratified.html

14. Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., Triggs, B.: On the absolute quadratic complex and its application to autocalibration. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 780–787. Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/CVPR.2005.256

15. Ronda, J.I., Valdés, A., Gallego, G.: Line geometry and camera autocalibration. J. Math. Imaging Vis. 32(2), 193–214 (2008). DOI http://dx.doi.org/10.1007/s10851-008-0095-0

16. Schröcker, H.P.: Intersection conics of six straight lines. Beitr. Algebra Geom 46(2), 435–446 (2005)

17. Seo, Y., Heyden, A.: Auto-calibration from the orthogonality constraints. In: Proc. International Conference on Pattern Recognition, vol. 01, pp. 1067–1071. Los Alamitos, CA, USA (2000). DOI http://doi.ieeecomputersociety.org/10.1109/ICPR.2000.905277

18. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)

19. Sturm, P.: Critical motion sequences for monocular selfcalibration and uncalibrated euclidean reconstruction. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on 0, 1100 (1997). DOI http://doi.ieeecomputersociety.org/10.1109/CVPR.1997.609467

20. Sturm, P.: Self-calibration of a moving zoom-lens camera by precalibration. Image and Vision Computing 15(8), 583–589 (1997). URL http://perception.inrialpes.fr/Publications/1997/Stu97b

21. Tresadern, P.A., Reid, I.D.: Camera calibration from human motion. Image Vision Comput. 26(6), 851–862 (2008). DOI http://dx.doi.org/10.1016/j.imavis.2007.10.001

22. Triggs, B.: Autocalibration and the absolute quadric. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 609–614. Puerto Rico, USA (1997). URL http://perception.inrialpes.fr/Publications/1997/Tri97

23. Valdés, A., Ronda, J.I., Gallego, G.: Linear camera autocalibration with varying parameters. In: Proc. International Conference on Image Processing, vol. 5, pp. 3395–3398. Singapore (2004)

24. Valdés, A., Ronda, J.I., Gallego, G.: The absolute line quadric and camera autocalibration. International Journal of Computer Vision 66(3), 283–303 (2006

Deposited On:07 Mar 2012 15:45
Last Modified:07 Mar 2012 15:45

Repository Staff Only: item control page