Universidad Complutense de Madrid
E-Prints Complutense

Minimally Conditioned Likelihood for a Nonstationary State Space Model



Último año

Casals Carro, José y Sotoca López, Sonia y Jerez Méndez, Miguel (2012) Minimally Conditioned Likelihood for a Nonstationary State Space Model. [ Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE); nº 04, 2012, ] (No publicado)

[img] PDF
Creative Commons License
Esta obra está bajo una licencia de Creative Commons: Reconocimiento - No comercial.


URL Oficial: http://eprints.ucm.es/14629/

URLTipo de URL


Computing the gaussian likelihood for a nonstationary state-space model is a difficult problem which has been tackled by the literature using two main strategies: data transformation and diffuse likelihood. The data transformation approach is cumbersome, as it requires nonstandard filtering. On the other hand, in some nontrivial
cases the diffuse likelihood value depends on the scale of the diffuse states, so one can obtain different likelihood values corresponding to different observationally equivalent
models. In this paper we discuss the properties of the minimally-conditioned likelihood function, as well as two efficient methods to compute its terms with computational
advantages for specific models. Three convenient features of the minimally-conditioned likelihood are: (a) it can be computed with standard Kalman filters, (b) it is scale-free,
and (c) its values are coherent with those resulting from differencing, being this the most popular approach to deal with nonstationary data.

Tipo de documento:Documento de trabajo o Informe técnico
Palabras clave:State-space models, Conditional likelihood, Diffuse likelihood, Diffuse initial conditions, Kalman filter, Nonstationarity.
Materias:Ciencias Sociales > Economía > Econometría
Título de serie o colección:Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
Código ID:14629
Depositado:06 Mar 2012 11:24
Última Modificación:17 Jun 2016 09:33

Descargas en el último año

Sólo personal del repositorio: página de control del artículo