Complutense University Library

On the conformal geometry of transverse Riemann-Lorentz manifolds


Aguirre Dabán, Eduardo and Fernandez, V. and Lafuente, J. (2007) On the conformal geometry of transverse Riemann-Lorentz manifolds. Journal of geometry and physics, 57 (7). pp. 1541-1547. ISSN 0393-0440

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Rieniann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.

Item Type:Article
Uncontrolled Keywords:Singularities; Extendability; Metrics
Subjects:Sciences > Physics > Mathematical physics
Sciences > Mathematics > Numerical analysis
ID Code:14641

E. Aguirre, J. Lafuente, Trasverse Riemann–Lorentz metrics with tangent radical, Differential Geom. Appl. 24 (2) (2005) 91–100.

J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815–1834.

U. Hertrich-Jeromin, Introduction to M¨obius Differential Geometry, Cambridge Univ. Press, 2003.

M. Kossowski, Fold singularities in pseudoriemannian geodesic tubes, Proc. Amer. Math. Soc. 95 (1985) 463–469.

M. Kossowski, Pseudo-riemannian metric singularities and the extendability of parallel transport, Proc. Amer. Math. Soc. 99 (1987) 147–154.

M. Kossowski, M. Kriele, Transverse, type changing, pseudo riemannian metrics and the extendability of geodesics, Proc. R. Soc. Lond. Ser.

A 444 (1994) 297–306.

M. Kossowski, M. Kriele, The volume blow-up and characteristic classes for transverse, type changing, pseudo-riemannian metrics, Geom.

Dedicata 64 (1997) 1–16.

B. O‘Neill, Semi-Riemannian Geometry, Academic Press, 1983.

Deposited On:17 Apr 2012 10:25
Last Modified:25 Apr 2016 14:36

Repository Staff Only: item control page