Biblioteca de la Universidad Complutense de Madrid

The b-completion of the Friedmann space

Impacto

Amores Lázaro, Ángel Miguel y Gutiérrez, M (1999) The b-completion of the Friedmann space. Journal of geometry and physics, 29 (01-feb). pp. 177-197. ISSN 0393-0440

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

1MB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0393044098000382



Resumen

We study the b-completion of the three Friedmann models of the Universe, having as models for 3-space the sphere, the Euclidean space or the hyperbolic space. We show that in the first case there is just one singularity, having the full completion as only neighborhood. In the other two cases there is one essential singularity, which is the limit of all past causal geodesics; again, it has a single neighborhood. This extends results by Bosshard [On the b-boundary of the closed Friendmann Model, Commun. Math. Phys. 46 (1976) 263-268] and Johnson [The bundle boundary in some special cases, J. Math. Phys. 18 (5) (1977) 898-902] on the closed Friedmann model. (C) 1999 Elsevier Science B.V. All rights reserved.


Tipo de documento:Artículo
Palabras clave:Singularities; B-completion; Friedmann space, Mathematics, Applied; Physics, Mathematical
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:14714
Referencias:

[l] B. Bosshard, On the b-boundary of the closed Friedmann model, Commun. Math. Phys. 46 (1976)

263-268.

[2] D. Canarutto, An introduction to the geometry of singularities in general relatively, Riv. Nuovo Cimento

11 (3) (1988) l-60.

[3] C.T.J. Dodson, Spacetime edge geometry, Int. J. Theoret. Phys. 17 (6) (1978) 389-504.

[4] SW. Hawking, G.F.R. Ellis, The Large-Scale Structure of Spacetime, University Press, Cambridge, 1973.

[5] R.A. Johnson, The bundle boundary in some special cases, .I. Math. Phys. 18 (5) (1977) 898-902.

[6] M.A. Naimark, Les representations lineaires du groupe de Lorentz, Dunod, Paris, 1962.

[7] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York,

1982.

[S] B.G. Schmidt, A new definition of singular points in general relativity, Gen. Rel. Grav. 1 (3) (1971)

269-280.

Depositado:17 Abr 2012 10:02
Última Modificación:06 Feb 2014 10:07

Sólo personal del repositorio: página de control del artículo