Biblioteca de la Universidad Complutense de Madrid

Avoiding ergodicity and turbulence in R-3 vector fields

Impacto

Ancochea Bermúdez, José María y Campoamor Stursberg, Otto Ruttwig y Gonzalez-Gascon, F. (2003) Avoiding ergodicity and turbulence in R-3 vector fields. Physics Letters A, 317 . pp. 242-251. ISSN 0375-9601

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

230kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0375960103011538



Resumen

We show that analytic R-3 vector fields having the property of being transversal to either analytic functions or foliations F-2, or parallel. to a foliation, are free from ergodicity and turbulence. The absence of turbulence and ergodicity via induced vector fields is also proven.


Tipo de documento:Artículo
Palabras clave:Dynamical-systems; Strange attractors; Jerk functions; Chaotic flows; Eigenfunctions; Equations; Motion
Materias:Ciencias > Matemáticas > Análisis matemático
Ciencias > Matemáticas > Geometria algebraica
Código ID:14720
Referencias:

E. Coddington, N. Levinson, Theory of Ordinary Differential

Equations, McGraw–Hill, New York, 1990;

P. Hartmann, Ordinary Differential Equations, Wiley, New

York, 1964;

S. Wiggins, Introduction to Applied Nonlinear Dynamical

Systems and Chaos, Springer, New York, 1990.

J. Palis, W. Melo, Geometrical Theory of Dynamical Systems,

Springer, Berlin, 1977.

A. Parusinski, P. Pragarz, J. Algebraic Geom. 4 (1995) 337;

S. Lenci, R. Lupini, Z. Angew. Math. Phys. 47 (1996) 97;

R. García, A. Nemethy, Compositio Math. 100 (1996) 205;

A. Nemethy, J. London Math. Soc. 59 (2) (1999) 922.

G. Aitken, Mathematical Methods for Physicists, Academic

Press, Orlando, 1985.

J. Eckmann, Rev. Mod. Phys. 53 (1981) 643;

E. Ott, Rev. Mod. Phys. 53 (1981) 655;

T. Talor, J. Wein, Phys. Rev. A 24 (1981) 2157;

C. Sparrow, The Lorenz Equation: Bifurcations Chaos and

Strange Attractors, Springer-Verlag, Berlin, 1982;

J. Eckmann, Rev. Mod. Phys. 57 (1985) 617;

I. Hovelin, F. Verhulst, Physica D 44 (1990) 397;

T. Sen, M. Tabor, Physica D 44 (1990) 313;

B. Hassard, J. Zhang, S. Hasting, W. Troy, Appl. Math. Lett. 7 (1994) 79.

V. Arnold, CRAS (Paris) 261 (1965) 17;

M. Henon, CRAS (Paris) 262 (1966) 312;

T. Dombre, V. Frisch, M. Henon, A. Mehr, A. Soward, J. Fluid

Mech. 167 (1986) 353;

O. Troshkin, Russian Math. Surveys 43 (1988) 153;

Z. Yoshida, J. Math. Phys. 33 (1992) 1252;

J. Sprott, Phys. Rev. E 50 (1990) 647;

J. Sprott, Phys. Lett. A 228 (1997) 271;

J. Sprott, Amer. J. Phys. 65 (1997) 537;

J. Sprott, Amer. J. Phys. 68 (2000) 758;

S. Zighin, J. Funct. Anal. Appl. 30 (1996) 137;

W. Arnold, B. Khesin, Topological Methods in Hydrodynamics,

Springer, New York, 1998;

A. Gilbert, S. Children, Phys. Rev. Lett. 65 (1990) 2133.

W. Hoover, Phys. Rev. E 51 (1995) 759.

S. Linz, Am. J. Phys. 65 (1997) 523;

S. Linz, Phys. Rev. E 58 (1998) 7151;

S. Linz, Phys. Lett. A 259 (1994) 240;

R. Eichorn, S. Linz, P. Hänggi, Phys. Lett. A 275 (2000) 204.

H. Gottlieb, Am. J. Phys. 64 (1996) 525;

H. Gottlieb, Am. J. Phys. 66 (1998) 903.

Z. Fu, J. Heidel, Nonlinearity 10 (1997) 1289.

J. Strelcyn, S. Wojciechowski, Phys. Lett. A 133 (1998) 207.

[12] R. Abraham, J. Marsden, Foundations of Mechanics, Benjamin, London, 1978.

V. Arnold, Singularidades de Cáusticas y Frentes de Onda,

Rubiños, Madrid, 2000.

W. Panosky, M. Phillips, Classical Electricity and Magnetism, Addison–Wesley, Reading, MA, 1962.

R. Palais, A Global Formulation of the Lie Theory of Transformation Groups, in: Memoirs American Mathematical Society, Vol. 22, American Mathematical Society, Providence, RI, 1957.

C. Camacho, A.L. Neto, Geometric Theory of Foliations,

Birkhäuser, Boston, 1985.

G. Hector, U. Hirsch, Introduction to the Geometry of Foliations, Vieweg, Braunschweig, 1986;

A. Haefliger, Colloque de Topologie de Strasbourg, 1955;

A. Haefliger, Commun. Math. Helv. 32 (1958) 249.

C. Camacho, Bol. Soc. Basil. Mat. 5 (1) (1974) 11.

S. Chandrasekhar, P. Krendall, Astrophys. J. 126 (1957) 457;

H. Moses, SIAM J. Appl. Math. 21 (1971) 114;

H. Moses, J. Math. Phys. 25 (1984) 1905;

P. Constantin, A. Majda, Commun.Math.Phys.115(1988) 435;

F.G. Gascón, D. Peralta, Phys. Lett. A 292 (2001) 75.

Y. Choquet-Bruhat, C. de Witt, M. Dillard, Analysis, Manifolds and Physics, North-Holland, Amsterdam, 1977

Depositado:17 Abr 2012 10:03
Última Modificación:06 Feb 2014 10:07

Sólo personal del repositorio: página de control del artículo