Complutense University Library

Verifying the body tide at the Canary Islands using tidal gravimetry observations

Arnoso, J. and González Montesinos, Fuensanta and Vieira, Ricardo and Bos, M. S. and Benavent Merchán, María Teresa (2011) Verifying the body tide at the Canary Islands using tidal gravimetry observations. Journal of Geodynamics, 51 (5). pp. 358-365. ISSN 0264-3707

[img] PDF
Restricted to Repository staff only until 2020.

684kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0264370710001353

View download statistics for this eprint

==>>> Export to other formats

Abstract

Gravity tide records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been
analyzed and compared to the theoretical body tide model (DDW) of Dehant el al. (1999). The use of
more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a
factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published
values. Also, the calibration values have been revisited at those sites. Precise ocean tide loading (OTL)
corrections based on up-to-date global ocean models and improved regional ocean model have been
obtained for the main tidal harmonics O1, K1, M2, S2.We also point out the importance of using the most
accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors
depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data
series. Finally, the comparison of the tidal observations with the theoretical body tide models has been
done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.

Item Type:Article
Uncontrolled Keywords:Global Ocean Tides; Gravity Measurements; Earth Model; Altimetry; Program; Vav; Earth Tide; Ocean Tide Loading; Tidal Analysis; Oceanic Models; Canary Islands; Geochemistry & Geophysics
Subjects:Sciences > Mathematics > Geodesy
ID Code:14747
References:

Arnoso, J., Fernández, J., Vieira, R., 2001a. Interpretation of tidal gravity anomalies

in Lanzarote, Canary Islands. J. Geodyn. 31, 341–354.

Arnoso, J., Vieira, R., Velez, E.J., van Ruymbeke, M., Venedikov, A.P., 2001b. Studies of

tides and instrumental performance of three gravimeters at Cueva de los Verdes

(Lanzarote Spain). J. Geodet. Soc. Jpn. 47 (1), 70–75.

Arnoso, J., Benavent, M., Ducarme, B., Montesinos, F.G., 2006a. A new ocean tide

loading model in the Canary Islands region. J. Geodyn. 41, 100–111.

Arnoso, J., Benavent, M., Montesinos, F.G., 2006b. Estimation of errors in the

regional ocean tide model (CIAM) for Canary Islands. In: Proc. V Asamblea

Hispano-Portuguesa de Geodesia y Geofísica. Ministerio de Medio Ambiente

(CD-ROM).

Baker, T.F., Edge, R.J., Jeffries, G., 1989. European tidal gravity: an improved

agreement between observations and models. Geophys. Res. Lett. 16, 1109–

1112.

Baker, T.F., Curtis, D.J., Dodson, A.H., 1996. A new test of earth tide models in central

Europe. Geophys. Res. Lett. 23 (24), 3559–3562.

Baker, T.F., Bos, M.S., 2003. Validating earth and ocean tide models using tidal gravity

measurements. Geophys. J. Int. 152 (2), 468–485.

Bos, M.S., Baker, T.F., 2005. An estimation of the errors in the gravity ocean tide

loading computations. J. Geod. 79 (1–3), 50–63.

Crossley, D., Hinderer, J., Casula, G., Francis, O., Hsu, H.-T., Imanishi, Y., Jentzsch,

G., Kääriäinen, J., Meriam, J., Meurers, B., Neumeyer, J., Richter, B., Shibuya,

K., Sato, T., van Dam, T., 1999. Network of superconducting gravimeters benefits

a number of disciplines. EOS Trans. Am. Geophys. Union 80 (11), 121–

126.

Dehant, V., Zschau, J., 1989. The effect of mantle inelasticity on tidal gravity: a comparison

between the spherical and the elliptical earth model. Geophys. J. 97,

549–556.

Dehant, V., Defraigne, P., Wahr, J.M., 1999. Tides for a convective earth. J. Geophys.

Res. 104 (B1), 1035–1058.

Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference earth model. Phys.

Earth Planet. Int. 25, 297–356.

Egbert, G.D., Erofeeva, S.Y., 2002. Efficient inverse modeling of barotropic ocean

tides. J. Atmos. Ocean. Technol. 19 (2), 183–204.

El Wahabi, A., Ducarme, B., van Ruymbeke, M., 2001. Humidity and temperature

effects on LaCoste & Romberg Gravimeters. J. Geod. Soc. Jpn. 47, 10–15.

Farrell, W.E., 1972. Deformation of the Earth by Surface Loads. Rev. Geophys. Space

Phys. 10 (3), 761–797.

Farrell, W.E., 1973. Earth tides, ocean tides and tidal loading. Philos. Trans. R. Soc.

Lond. A 274, 253–259.

Hartman, T., Wenzel, H.-G., 1995. The hw95 tidal potential catalogue. Geophys. Res.

Lett. 22 (24), 3553–3556.

LaCoste & Romberg LLC, 2002. Graviton-EG user’s manual. Revision 1.8, p. 51.

Le Provost, C., Genco, M.L., Lyard, F., Vincent, P., Canceil, P., 1994. Spectroscopy of

the world ocean tides from a finite-element hydrodynamic model. J. Geophys.

Res. 99 (C12), 24777–24797.

Le Provost, C., 2001. Ocean tides. In: Fu, L.L., Cazenave, A. (Eds.), Satellite Altimetry

and Earth Sciences, vol. 69. International Geophysics Series, pp. 267–303.

Lyard, F., Lefevre, F., Letellier, T., Francis, O., 2006. Modelling the global ocean tides:

modern insights from FES2004. Ocean Dynam. 56, 394–415.

Matsumoto, N., Sato, T., Takanezawa, G., Ooe, M., 2001. GOTIC2: a program for computation

of oceanic tidal loading effect. J. Geod. Soc. Jpn. 47 (2001), 243–248.

Melchior, P., 1994. A new data bank for tidal gravity measurements (db92). Phys.

Earth Planet. Inter. 82, 125–155.

Pálinkáˇs, V., 2006. Precise tidal measurements by spring gravimeters at the station

Pecny´ . J. Geodyn. 41, 14–22.

Ray, R.D., 1999. A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry:

GOT99.2. In: NASA Tech. Mem. 209478.

Riccardi, U., Berrino, G., Corrado, G., Hinderer, J., 2008. Strategies in the processing

and analysis of continuous gravity record in active volcanic areas: the case of

Mt. Vesuvius. Ann. Geophys. 51 (1), 67–85.

Riccardi, U., Berrino, G., Corrado, G., 2002. Changes in instrumental sensitivity of

some feedback systems used in LaCoste–Romberg gravimeters. Metrologia 39,

509–515.

Richter, B., Wenzel, H.-G., 1991. Precise instrumental phase lag determination by

step response method. Bull. d’Inf. Marées Terr. 111, 8032–8052.

Smith, W.H.F., Sandwell, D.T., 1997. Global sea floor topography from satellite

altimetry and ship depth soundings. Science 277 (5334), 1956–1962.

Tamura, Y., 1987. A harmonic development of the tide-generating potential. Bull.

d’Inf. Marées Terr. 99, 6813–6855.

van Ruymbeke, M., 1985. Transformation of nine LaCoste–Romberg gravimeters in

feedback system. Bull. d’Inf. Marées Terr. 93, 6202–6228.

Venedikov, A.P., Arnoso, J., Vieira, R., 2003. VAV: a program for tidal data processing.

Comput. Geosci. 29, 487–502.

Venedikov, A.P., Arnoso, J., Vieira, R., 2005. New version of program VAV for tidal

data processing. Comput. Geosci. 31, 667–669.

Vieira, R., Torroja, J.M., Toro, C., 1986. A general discussion about the normalization

of gravimeters in the Iberian gravity profile. In: Vieira, R. (Ed.), Proc. 10th Int.

Symp. Earth Tides. Cons. Sup. Invest. Cient., Madrid, pp. 165–175.

Vieira, R., van Ruymbecke, M., Fernández, J., Toro, C., 1991. The Lanzarote Underground

Laboratory. Cahiers Centre Europ. Géodyn. Séismol 4, 71–86.

Vieira, R., Camacho, A.G., Toro, C., Montesinos, F.G., 1992. A calibration gravimetric

line between Madrid and Valle de los Caídos stations. Comptes Rendus J.L.G.

Conseil Europe 73, 18–25.

Wessel, P., Smith, W.H.F., 1996. A global, self-consistent, hierarchical, highresolution

shoreline database. J Geophys. Res. 101 (B4), 8741–8743.

Deposited On:17 Apr 2012 11:23
Last Modified:06 Feb 2014 10:08

Repository Staff Only: item control page