Biblioteca de la Universidad Complutense de Madrid

On the stability of the universal quotient bundle restricted to congruences of low degree of G(1,3)

Impacto



Arrondo Esteban, Enrique y Cobo Pablos, Sofía (2010) On the stability of the universal quotient bundle restricted to congruences of low degree of G(1,3). Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 93 . pp. 503-522. ISSN 0391-173X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

43kB

URL Oficial: http://annaliscienze.sns.it/public/pdf/abstracts/2010/Abstract_03_F3.pdf



Resumen

We study the semistability of Q vertical bar s, the universal quotient bundle on G(1,3) restricted to any smooth surface S (called congruence). Specifically, we deduce geometric conditions for a congruence S, depending on the slope of a saturated linear subsheaf of Q vertical bar s. Moreover, we check that the Dolgachev-Reider Conjecture (i.e. the semistability of Q vertical bar s for nondegenerate congruences S) is true for all the congruences of degree less than or equal to 10. Also, when the degree of a congruence S is less than or equal to 9, we compute the highest slope reached by the linear subsheaves of Q vertical bar s.


Tipo de documento:Artículo
Palabras clave:Smooth surfaces; Lines
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:14755
Depositado:17 Abr 2012 11:34
Última Modificación:06 Feb 2014 10:08

Sólo personal del repositorio: página de control del artículo