Complutense University Library

Subsurface geometry and structural evolution of La Gomera island based on gravity data

Gonzalez Montesinos, Fuensanta and Benavent Merchán, María Teresa and Vieira, Ricardo and Arnoso, José (2011) Subsurface geometry and structural evolution of La Gomera island based on gravity data. Journal of volcanology and geothermal research, 199 (1-feb). pp. 105-117. ISSN 0377-0273

[img] PDF
Restricted to Repository staff only until 2020.

2MB

Official URL: http://www.sciencedirect.com/science/article/pii/S0377027310003173

View download statistics for this eprint

==>>> Export to other formats

Abstract

We hereby present a new Bouguer gravity map of the La Gomera island (Canarian Archipelago), which is analysed and interpreted by means of a 3-dimensional inversion, in order to contribute to the knowledge of the structural setting of this volcanic island and its evolutionary history. A land gravity data set covering the whole island of La Gomera is used in combination with offshore measurements to achieve a better determination of the gravity field in areas near the coasts. The study of this map let us to shed some light on the hypothesis established about the volcanism of this island. Moreover, it shows the information that is hidden from a geological surface exploration, modelling deep sections of the crust in La Gomera, which have been unknown until now. A first interpretation of the Bouguer gravity anomaly is achieved from 1) the residual gravity map calculated by removing a regional component and 2) the total horizontal gradient of the gravity. These residual and derivative maps allow us to identify the horizontal location and borders of the shallowest gravity sources. This provides a useful tool to study the structures associated to the latest periods of the volcanism in the area. Moreover, the information so obtained supports the hypothesis about the migration of volcanic activity towards the south of the island. Subsequently, an inversion process is carried out looking for the 3D-modelisation of the sources of the observed gravity field, which provides a comprehensive view of the structures in volcanic environments. The inversion technique used is based on a genetic algorithm (GA) applied upon a prismatic partition of the subsoil volume, and adopting a priori values of density contrast (positive and negative). The main advantage of this method is that let us to model deep and shallow bodies which exhibit very different geometries and density contrasts. So, results indicate that this inversion strategy can be very effective for characterization of volcanic structures, improving the information from previous geologic and volcanologic studies. The inversion model obtained shows correlation between several sources of the gravity field and the volcanic units associated with the growth of La Gomera Island. The main gravity source of this model is associated with the oldest unit, called the Basal Complex. This unit corresponds to the first submarine growth stage and it is modelled as the most important and deepest high density structure. According to previous geological studies, the following edifice (Old Edifice) was also submarine in its initial phases, later being represented by a wide basaltic shield volcano. The original location and morphology of this Old Edifice is deduced from the distribution of positive density contrasts that appears in the model. Moreover, other gravity field sources are identified and associated to several feeding systems of this stage of the volcanism in La Gomera. The shallowest sections of the model let us recognise the distribution of light material inside the Vallehermoso caldera, surrounded by high density structures. This gives us some insight into the internal structure and morphology of the caldera, pointing to a vertical collapse origin followed by erosion and other destructive processes. Finally, other conclusions are obtained from the correlation found between the sources of the gravity field and the migration of the volcanic activity towards the southern area of the island.


Item Type:Article
Uncontrolled Keywords:Inverse problem; gravity anomalies; genetic algorithm; Canary islands; Canary-islands; internal structure; Geosciences, Multidisciplinary hawaiian volcanos; crustal structure; shallow structure;
Subjects:Sciences > Mathematics > Geometry
ID Code:14766
References:

Abdel-Monem, A., Watkins, N.D., Gast, P.W., 1971. Potassium–argon ages, volcanic

stratigraphy and geomagnetic polarity history of the Canary Islands; Lanzarote,

Fuerteventura, Gran Canaria and La Gomera. Am. J. Sci. 271, 490–521.

Acosta, J., Uchupi, E., Muñoz, A., Palomo, C., Ballesteros, M., Working Group, Z.E.E., 2003.

Geologic evolution of the Canarian islands of Lanzarote, Fuerteventura, Gran

Canaria and La Gomera and comparison of landslides at these islands with those in

Tenerife, La Palma and El Hierro. Mar. Geophys. Res. 24, 1–40.

Amante, C., Eakins, B. W., 2008. ETOPO1 1 Arc-Minute Global Relief Model: Procedures,

Data Sources and Analysis, National Geophysical Data Center, NESDIS, NOAA, U.S.

Department of Commerce, Boulder, CO, August 2008.

Ancochea, E., Brändle, J.L., Huertas, M.J., Cubas, C.R., Hernán, F., 2003. The felsic dikes of

La Gomera (Canary Islands): identification of cone sheet and radial dike swarms.

J. Volcanol. Geotherm. 120, 197–206.

Ancochea, E., Hernán, F., Huertas, M.J., Brändle, J.L., Herrera, R., 2006. A new

chronostratigraphical and evolutionary model for La Gomera: implications for

the overall evolution of the Canarian Archipelago. J. Volcanol. Geotherm. Res. 157,

271–293.

Ancochea, E., Brandle, J.L., Huertas, M.J., Hernan, F., Herrera, R., 2008. Dike-swarms, key

to the reconstruction of major volcanic edifices: the basic dikes of La Gomera

(Canary Islands). J. Volcanol. Geotherm. Res. 173 (3), 207–216.

Anguita, F., Hernán, F., 2000. The Canary Islands origin: a unifying model. J. Volcanol.

Geotherm. Res. 103, 1–26.

Araña, V., Camacho, A.G., Garcia, A., Montesinos, F.G., Blanco, I., Vieira, R., Felpeto, A.,

2000. Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic

and volcanological data. J. Volcanol. Geotherm. Res. 103 (4), 43–64.

Arnoso, J., Benavent, M., Ducarme, B., Montesinos, F.G., 2006. A new ocean tide loading

model in the Canary Islands region. J. Geodynamic 41 (1–3), 100–111.

Arnoso, J., Benavent, M., Bos, M.S., Montesinos, F.G., Vieira, R., 2010. Verifying the body

tide at the Canary Islands using tidal gravimetry observations. J. Geodyn.

doi:10.1016/j.jog.2010.10.004.

Barzaghi, R., Sanso, F., 1983. Sulla stima empirica della funzione di covarianza. Bolletirc

Geodesia Sci. Affine 4, 389–415.

Bravo, T., 1964. Estudio geológico y petrográfico de la isla de isla de la Gomera I. Estudio

geológico. Estud. Geol. 20, 1–21.

Camacho, A.G.,Montesinos, F.G., Vieira, R., Arnoso, J., 2001.Modelling of crustal anomalies

of Lanzarote (Canary Islands) in light of gravity data. Geophys. J. Int. 147, 1–22.

Camacho, A.G., Fernández, J., González, P., Rundle, J.B., Prieto, J., Arjona, A., 2009.

Structural results for La Palma island using 3-D gravity inversion. J. Geohys. Res. 114

(B5), B05411.1–B05411.12.

Canales, J.P., Danobeitia, J.J., Watts, A.B., 2000. Wide-angle seismic constraints on the

internal structure of Tenerife. Canary Islands. J. Volcanol. Geotherm. Res. 103 (1),

65–81.

Cantagrel, J.M., Cendrero, A., Fúster, J.M., Ibarrola, E., Jamond, C., 1984. K–Ar chronology

of the volcanic eruptions in the Canarian Archipelago: island of La Gomera. Bull.

Volcanol. 47, 597–609.

Carracedo, J.C., 1999. Growth, structure, instability and collapse of Canarian volcanoes

and comparisons with Hawaiian volcanoes. J. Volcanol. Geotherm. Res. 94, 1–19.

Catalan, M., Martin Davila, J., ZEE Working Group, 2003. A magnetic anomaly study

offshore the Canary Archipelago. Mar. Geophys. Res. 24, 129–148.

Cella, F., Fedi, M., Florio, G., Grimaldi, M., Rapolla, A., 2007. Shallow structure of the

Somma-Vesuvius volcano from 3D inversion of gravity data. J. Volcanol. Geotherm.

Res. 161 (4), 303–317.

Cendrero, A., 1970. The volcano-plutonic complex of La Gomera (Canary Islands). Bull.

Volcanol. 34, 537–561.

Cendrero, A., 1971. Estudio geológico y petrológico del complejo basal de la isla de La

Gomera (Canarias). Estud. Geol. 27, 3–73.

Cooper, G.R.J., Cowan, D.R., 2006. Enhancing potential field data using filters based on

the local phase. Comput. Geosci. 32, 1585–1591.

Cubas, C.R., Ancochea, E., Hernán, F., Huertas, M.J., Brändle, J.L., 2002. Edad de los domos

sálicos de la isla de La Gomera. Geogaceta 32, 69–72.

Cueto, L.A., Barrera, J.L., Gómez, J.A., 1994. La caldera de hundimiento de Vallehermoso,

Isla de La Gomera (Canarias). Bol. Geol. Min. 105–4, 7–12.

Dañobeitia, J.J., Canales, J.O., 2000. Magmatic underplating in the Canary Archipelago.

J. Volcanol. Geotherm. Res. 103 (1), 27–41.

Folger, D.W., McCullough, J.R., Irwin, B. J., Dodd, J.E., Strahle, W.J., Polloni, C.F., Bouse, R.M.,

1990. Map showing free-air gravity anomalies around the Canary Islands, Spain,

Miscellaneous Field StudiesMap,MF-2098-B, p. (1 sheet), U.S. Geol. Surv., United States.

Gottsmann, J., Camacho, A.G., Marti, J., Wooller, L., Fernandez, J., Garcia, A., Rymer, H.,

2008. Shallow structure beneath the Central Volcanic Complex of Tenerife from

new gravity data: implications for its evolution and recent reactivation. Phys. Earth

Planet. Inter. 168 (3–4), 212–230.

Grefenstette, J.J., 1986. Optimization of control parameter for genetic algorithms. IEEE

Trans. Syst. Man Cybern. 16 (1), 122–128.

Hampton, S.J., Cole, J.W., 2009. Lyttelton Volcano, Banks Peninsula, New Zealand:

primary volcanic landforms and eruptive centre identification. Geomorphology 104

(3–4), 284–298.

Kauahikaua, J., Hildenbrand, T., Webring, M., 2000. Deep magmatic structures of

Hawaiian volcanoes, imaged by three-dimensional gravity models. Geology 28,

883–886.

Klingelhofer, F., Minshull, T.A., Blackman, D.K., Harben, P., Childers, V., 2001. Crustal

structure of Ascension Island from wide-angle seismic data: implications for the

formation of near-ridge volcanic islands. Earth Planet. Sci. Lett. 190, 41–56.

Le Bas, M.J., Rex, D.C., Stillman, C.J., 1986. The early magmatic chronology of

Fuerteventura. Geol. Mag. 123, 287–298.

Llanes, P., Herrera, R., Gómez, M., Muñoz, A., Acosta, J., Uchupi, E., Smith, D., 2009.

Geological evolution of the volcanic island La Gomera, Canary Islands, from analysis

of its geomorphology. Mar. Geol. 264 (3–4), 123–139.

Malengreau, B., Lenat, J.F., Froger, J.L., 1999. Structure of Reunion Island (Indian Ocean)

inferred from the interpretation of gravity anomalies. J. Volcanol. Geotherm. Res. 88 (3),

131–146.

Marinoni, L.B., Pasquare, G., 1994. Tectonic evolution of the emergent part of a volcanic

ocean island: Lanzarote, Canary Islands. Tectonophysics 239, 111–135.

Masturyono, McCaffrey, R., Wark, D.A., Roecker, S.W., Fauzi, Ibrahim, Sukhyar, G., 2001.

Distribution of magma beneath Toba caldera complex, north Sumatra, Indonesia,

constrained by three-dimensional P wave velocities, seismicity, and gravity.

Geochem. Geophys. Geosys. 2 2000GC000096.Michalewicz, Z., 1994. Genetic Algorithms+Data Structures=Evolution Programs,

Second extended edition. Springer- Verlag, Berlin. 340 pp.

Minshull, T.A., Brozena, J.M., 1997. Gravity anomalies and £exure of the lithosphere at

Ascension Island. Geophys. J. Int. 131, 347–360.

Montesinos, F.G., Camacho, A.G., Nunes, J.C., Oliveira, C.S., Vieira, R., 2003. A 3-D gravity

model for a volcanic crater in Terceira Island (Azores). Geophys. J. Int. 154, 1–14.

Montesinos, F.G., Arnoso, J., Vieira, R., 2005. Using a genetic algorithm for 3-D inversion

of gravity data in Fuerteventura (Canary Islands). Int. J. Earth Science. 94, 301–315.

Montesinos, F.G., Arnoso, J., Benavent, M., Vieira, R., 2006. The crustal structure of El

Hierro (Canary Islands) from 3-d gravity inversion. J. Volcanol. Geotherm. Res. 150

(1–3), 283–299.

Moritz, H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe.

500 pp.

Paoletti, V., Maio, R.Di., Cella, F., Florio, G., Motschka, K., Roberti, N., Secomandi, M.,

Supper, R., Fedi, M., Rapolla, A., 2009. The Ischia volcanic island (Southern Italy):

inferences from potential field data interpretation. J. Volcanol. Geotherm. Res. 179,

69–86.

Paris, R., Guillou, H., Carracedo, J.C., Pérez Torrado, F.J., 2005. Volcanic and

morphological evolution of La Gomera (Canary Islands), based on new K–Ar ages

and magnetic stratigraphy: implications for oceanic island evolution. J. Geol. Soc.

Lond. 162, 501–512.

Rodríguez-Losada, J.A., 1987. Un complejo de diques cónicos en la isla de La Gomera,

Islas Canarias, Estud. Geology 43, 41–45.

Rodríguez-Losada, J.A., 1988. El Complejo Traquítico Fonolítico de La Gomera (Islas

Canarias). Ph. D. Thesis, Univ. Complutense, Madrid, Spain.

Rodríguez-Losada, J.A., Martínez Frías, J., 2004. The felsic complex of the Vallehermoso

Caldera: interior of an ancient volcanic system (La Gomera, Canary Islands). J.

Volcanol. Geotherm. Res. 137, 261–284.

Rymer, H., Brown, G.C., 1986. Gravity fields and the interpretation of volcanic

structures: geological discrimination and temporal evolution. J. Volcanol.

Geotherm. Res. 27, 229–254. doi:10.1016/0377- 0273(86)90015-6.

Silva, J.B.C., Medeiros, W.E., Barbosa, V.C.F., 2001. Potential-field inversion: choosing the

appropriate technique to solve a geologic problem. Geophysics 66 (2), 511–520.

Staudigel, H., Schmincke, H.U., 1984. The Pliocene seamount series of La Palma (Canary

Islands). J. Geophys. Res. 89 (B13), 11,195–11,215.

Deposited On:17 Apr 2012 12:01
Last Modified:06 Feb 2014 10:08

Repository Staff Only: item control page