Biblioteca de la Universidad Complutense de Madrid

Approximation by smooth functions with no critical points on separable Banach spaces

Impacto

Azagra Rueda, Daniel y Jiménez Sevilla, María del Mar (2007) Approximation by smooth functions with no critical points on separable Banach spaces. Journal of Functional Analysis , 242 (1). pp. 1-36. ISSN 0022-1236

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

450kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022123606003600



Resumen

We characterize the class of separable Banach spaces X such that for every continuous function f : X -> Rand for every continuous function epsilon : X -> (0, +infinity) there exists a C-1 smooth function g: X -> R for which vertical bar f(x) - g(x)vertical bar <= epsilon(x) and g'(x) not equal 0 for all x is an element of X (that is, g has no critical points), as those infinite-dimensional Banach spaces X with separable dual X*. We also state sufficient conditions on a separable Banach space so that the function g can be taken to be of class C-p, for p = 1, 2,..., +infinity. In particular, we obtain the optimal order of smoothness of the approximating functions with no critical points on the classical spaces l(p)(N) and L-p(R-n). Some important consequences of the above results are (1) the existence of a non-linear Hahn-Banach theorem and the smooth approximation of closed sets, on the classes of spaces considered above; and (2) versions of all these results for a wide class of infinite-dimensional Banach manifolds.


Tipo de documento:Artículo
Palabras clave:Rolles theorem; Singular maps; Hilbert-space; Image size; Manifolds; Morse-Sard theorem; smooth bump functions; critical points; approximation by smooth functions; Sard functions
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:14770
Depositado:17 Abr 2012 11:52
Última Modificación:01 Feb 2016 16:10

Sólo personal del repositorio: página de control del artículo