Complutense University Library

The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets

Acquistapace, Francesca and Andradas Heranz, Carlos and Broglia, Fabrizio (2000) The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets. Mathematische Annalen, 316 (4). pp. 606-616. ISSN 0025-5831

[img] PDF
Restricted to Repository staff only until 2020.

77kB

Official URL: http://www.springerlink.com/content/4pq0j27lr3k08e5l/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

Analytic functions strictly positive on a global semianalytic set X = {f1 0, · · · , fk 0} in Rn
are characterized as functions expressible as g = a0+a1f1+· · ·+akfk for strictly positive global analytic functions a0, · · · , ak. The proof is elementary, using the fact that the analytic functions are dense in C(Rn,R) in the Whitney topology. The same proof works for Nash functions. This is an improvement of the standard analytic version of Stengle’s Positivstellensatz in two directions: The hypothesis is weaker (there is no requirement that X be compact) and the conclusion is stronger. Several applications are given including: (i) a new proof of the weak Positivstellensatz for semianalytic sets; and (ii) the solution of theK-moment problem for basic closed semianalytic


Item Type:Article
Uncontrolled Keywords:Positivstellensatz; global semianalytic set; K-moment problem Classification
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:14797
References:

[ABR] C. Andradas, L.Br¨ocker, J.M.Ruiz. Constructible sets in real geometry. Ergeb. Math.

Greuzgeb (3) 33 Berlin Springer Verlag (1996)

[BCR] J. Bochnack, M.Coste, M.F.Roy. Real algebraic geometry. Ergeb. Math. Greuzgeb (3) 36

Berlin Springer Verlag (1998)

[BS] E. Becker, N. Schwartz. Zum Darstellungsatz von Kadison–Dubois. Archiv der Math.

Vol. 40 (1983),421–428

[BW] R. Berr, T.W¨orman. Positive polynomials and tame preorderings. Preprint (1998)

[C] G. Choquet.Lectures on analysis. Vol. 1 Reading; Benjamin (1969)

[J] T. Jacobi. A representation theorem for certain partially ordered commutative rings. To

appear.

[M] M.A. Marshall. A real holomorphy ring without the Schm¨udgen property. Canad. Math.

Bull. 42(3), 354–358 (1999)

[N] R. Narasimhan. Analysis on real and complex manifolds. Masson & cie, Paris; North-

Holland, Amsterdam (1968)

[P] M. Putinar. Positive Polynomials on Compact Semi-algebraic Sets. Indiana Univ. math.

Journ. Vol. 42 No. 3 969–984 (1993)

[S] K. Schm¨udgen. The K–moment problem for compact semi–algebraic sets. Math. Ann.

289, 203–206 (1991)

[Sh] M. Shiota. Nash Manifolds. Lect. Notes in Math. 1269. Berlin: Springer-Verlag (1987)

[W] T.W¨ormann. Short algebraic proofs of theorems of Schm¨udgen and P´olya. to appear

Deposited On:18 Apr 2012 08:21
Last Modified:06 Feb 2014 10:09

Repository Staff Only: item control page