Biblioteca de la Universidad Complutense de Madrid

Fractal analysis and tumour growth

Impacto

Bru Espino, Antonio y Casero Díaz-Cano, David y De Franciscis, Sebastiano y Herrero, Miguel A. (2008) Fractal analysis and tumour growth. Mathematical and Computer Modelling, 47 (5-6). pp. 546-559. ISSN 0895-7177

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

1MB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0895717707001847



Resumen

Tumour growth can be described in terms of mathematical models from different points of view due to its multiscale nature. Dynamic scaling is a heuristic discipline that exploits the geometrical features of growing fronts using different concepts from the theory of stochastic processes and fractal geometry. This work is concerned with some problems that arise in the study of tumour-host interfaces. The behaviour of their fluctuations leads to some stochastic evolution equations, which are studied here in the radial symmetry case. Some questions concerning the dynamic scaling of these models and their comparison with experimental results are addressed.


Tipo de documento:Artículo
Palabras clave:nonequilibrium growth; growing interfaces; models; dynamics; surface; tumour growth; fractal analysis; dynamic scaling; stochastic differential equations
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:14833
Depositado:18 Abr 2012 09:48
Última Modificación:18 Nov 2016 11:39

Sólo personal del repositorio: página de control del artículo