Biblioteca de la Universidad Complutense de Madrid

Identities induced by Riordan arrays

Impacto

Morón, Manuel A. y Luzón, Ana y Merlini , Donatella y Sprugnoli, Renzo (2012) Identities induced by Riordan arrays. Linear Algebra and Applications, 436 (3). pp. 631-647. ISSN 0024-3795

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

268kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0024379511005805



Resumen

Historically, there exist two versions of the Riordan array concept. The older one (better known as recursive matrix) consists of bi-infinite matrices (d(n,k)) (n,k is an element of Z) (k > n implies d(n,k) = 0), deals with formal Laurent series and has been mainly used to study algebraic properties of such matrices. The more recent version consists of infinite, lower triangular arrays (d(n,k)) (n,k is an element of N) (k > n implies d(n,k) = 0), deals with formal power series and has been used to study combinatorial problems. Here we show that every Riordan array induces two characteristic combinatorial sums in three parameters n, k, m is an element of Z. These parameters can he specialized and generate an indefinite number of other combinatorial identities which are valid in the hi-infinite realm of recursive matrices.


Tipo de documento:Artículo
Palabras clave:Umbral calculus; Matrices; Variables; Riordan arrays; Recursive matrices; Combinatorial identities
Materias:Ciencias > Matemáticas > Funciones (Matemáticas)
Ciencias > Matemáticas > Álgebra
Código ID:14834
Depositado:18 Abr 2012 09:23
Última Modificación:06 Feb 2014 10:10

Sólo personal del repositorio: página de control del artículo