Complutense University Library

Projections of Grassmannians of lines and characterization of Veronese varieties


Arrondo Esteban, Enrique (1999) Projections of Grassmannians of lines and characterization of Veronese varieties. Journal of algebraic geometry, 8 (1). pp. 85-98. ISSN 1056-3911

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


We characterize the double Veronese embedding of P-n as the only variety that, under certain general conditions, can be isomorphically projected from the Grassmannian of lines in P2n+1 to the Grassmannian of lines in Pn+1.

Item Type:Article
Uncontrolled Keywords:Superadditivity
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:14842

[°Ad] °Adslandvik, B., Varieties with an extremal number of degenerate higher secant varieties,

Journal reine angew. Math., 392 (1987), 213-222.

[Ar] Arrondo, E., Subvarieties of Grassmannians, Lecture Notes Series Dipartimento di

Matematica Univ. Trento, 10, 1996.

[ABT] Arrondo, E. – Bertolini, M. – Turrini, C., Congruences of small degree in G(1, 4),

Preprint 1996.

[A-S] Arrondo, E. – Sols, I., On congruences of lines in the projective space, M´em. Soc.

Math. France, 50, 1992.

[F] Fantechi, B., On the superadditivity of secant defects, Bull. Soc. Math. France, 118

(1990), 85-100.

[H-R] Holme, A. – Roberts, J., Zak’s theorem on superadditivity, Ark. Mat., 32 (1994),


[S] Severi, F., Intorno ai punti doppi impropri di una superficie generale dello spazio a

quattro dimensioni, e a suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, II,

Ser. 15 (1901), 377-401.

[Z1] Zak, F.L., Linear systems of hyperplane sections on varieties of low codimension,

Functional Anal. Appl. 19 (1986), 165-173.

[Z2] Zak, F.L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monographs

AMS 127, 1993.


Deposited On:18 Apr 2012 10:16
Last Modified:06 Feb 2014 10:10

Repository Staff Only: item control page