Complutense University Library

Parametric generalized offsets to hypersurfaces

Arrondo Esteban, Enrique and Sendra, Juana and Sendra, J. Rafael (1997) Parametric generalized offsets to hypersurfaces. Journal of symbolic computation, 23 . pp. 267-285. ISSN 0747-7171

[img] PDF
Restricted to Repository staff only until 2020.

771kB

Official URL: http://www.sciencedirect.com/science/journal/07477171

View download statistics for this eprint

==>>> Export to other formats

Abstract

In this paper we extend the classical notion of offset to the concept of generalized offset to hypersurfaces. In addition, we present a complete theoretical analysis of the rationality and unirationality of generalized offsets. Characterizations for deciding whether the generalized offset to a hypersurface is parametric or it has two parametric components are given. As an application, an algorithm to analyse the rationality of the components of the generalized offset to a plane curve or to a surface, and to compute rational parametrizations of its rational components, is outlined.

Item Type:Article
Uncontrolled Keywords:Curves
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:14853
References:

.|.|Farouki, R.T. (1992). Pythagorean-hodograph curves in practical use, in geometry processing for design

and manufacturing. Barnhill, R.E., ed., SIAM, Philadelphia. pp 3{33.

.|.|Farouki, R.T., Ne®, C.A. (1990a). Analytic properties of plane o®set curves. Computer Aided Geometric

Design 7 83{99.

.|.|Farouki, R.T., Ne®, C.A. (1990b). Algebraic properties of plane o®set curves. Computer Aided Geometric

Design 7 100{127.

.|.|Farouki, R.T., Ne®, C.A. (1997), Hermite interpolation by Pythagorean-hodograph quintics. Math. Comp.,

to appear.

.|.|Farouki, R.T., Sakkalis, T. (1990). Pythagorean hodographs. IBM J. Res. Develop. 34, 736{752.

.|.|Harris, J. (1992). Algebraic geometry: a ¯rst course. Springer-Verlag.

.|.|Ho®man, C. (1990). Algebraic and numerical techniques for o®sets and blends. Dahmen, W., et al., eds,

Computation of Curves and Surfaces. (Kluwer) pp. 499{528.

.|.|LÄu, W. (1995a). O®set-rational parametric plane curves, Computer Aided Geometric Design 12, 601{617.

.|.|LÄu, W. (1995b). Rational parametrizations of quadrics and their o®sets. Technical Report No. 24, Institut

fÄur Geometrie, Technische UniversitÄat Wien.

.|.|Pottmann, H., (1995). Rational curves and surfaces with rational o®sets, Computer Aided Geometric

Design 12, 175{192.

.|.|Pottmann, H., LÄu, W., Ravani, B. (1995). Rational ruled surfaces and their o®sets. Technical Report No.

23, Institut fÄur Geometrie, Technische UniversitÄat Wien.

.|.|Salmon, G. (1960). A Treatise on the Higher Plane Curves. New York, Chelsea.

.|.|Schicho, J. (1995). Rational Parametrization of Algebraic Surfaces. Symbolic Solution of an equation in

three variables. Ph.D. Thesis, University Linz, Austria.

.|.|Sendra, J. (1996). M¶etodos Algor¶³tmicos para variedades o®set. Ph.D. Thesis, Universidad de Alcal¶a,

Spain. In preparation.

.|.|Sendra, J.R., Sendra, J. (1995). On the rationality of o®set curves. Techn. Rep. RISC 95-02 Univ. Linz.

.|.|Sendra, J.R., Winkler, F. (1991). Symbolic parametrization of curves. J. Symbolic Computation 12/6,

607{631.

.|.|Winkler, F. (1996). Polynomial Algorithms in Computer Algebra. Springer-Verlag, ACM Press.

Deposited On:18 Apr 2012 10:32
Last Modified:06 Feb 2014 10:10

Repository Staff Only: item control page