Biblioteca de la Universidad Complutense de Madrid

Classification of smooth congruences of low degree

Impacto



Arrondo Esteban, Enrique y Sols, Ignacio (1989) Classification of smooth congruences of low degree. Journal für die reine und angewandte Mathematik, 393 . pp. 199-219. ISSN 0075-4102

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

1MB

URL Oficial: http://www.degruyter.com/view/j/crll



Resumen

We give a complete classification of smooth congruences - i.e. surfaces in the Grassmann
variety of lines in P 3C identified with a smooth quadric in P5- of degree at most 8, by
studying which surfaces of P5can lie in a smooth quadric and proving their existence.
We present their ideal sheaf as a quotient of natural bundles in the Grassmannian,
what provides a perfect knowledge of its cohomology (for example postulation or linear
normality), as well as many information on the Hilbert scheme of these families, such
as dimension, smoothness, unirationality - and thus irreducibility - and in some cases
rationality.


Tipo de documento:Artículo
Palabras clave:Smooth congruences; surfaces in the Grassmann variety of lines; cohomology; postulation; linear normality; Hilbert scheme
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:14858
Depositado:18 Abr 2012 10:37
Última Modificación:22 Ene 2016 15:12

Sólo personal del repositorio: página de control del artículo