Andradas Heranz, Carlos (1985) Real places in function-fields. Communications in algebra, 13 (5). pp. 1151-1169. ISSN 0092-7872
URL Oficial: http://rmmc.eas.asu.edu/abstracts/rmj/vol14-4/andpag1.pdf
Resumen
Let F/R be a function field over a real closed field R. The author proves the existence
of real places with prescribed rank and dimension (where these numbers satisfy obvious conditions). The main tool, a Zariski-dense curve selection lemma, is interesting in its
own right. Recent papers of F.-V. Kuhlmann and A. Prestel [J. Reine Angew. Math.
353, 181-195 (1984; Zbl 0535.12015] and of L. Br¨ocker and the referent [”Valuations of function fields from the geometrical point of view”, to appear in J. Reine Angew.
Math.] extend these results to a more general situation.
Tipo de documento: | Artículo |
---|---|
Palabras clave: | Real function fields; Real places; Zariski-dense curve selection lemma |
Materias: | Ciencias > Matemáticas > Geometria algebraica |
Código ID: | 14865 |
Depositado: | 18 Abr 2012 10:51 |
Última Modificación: | 18 Abr 2012 10:51 |
Descargas en el último año
Sólo personal del repositorio: página de control del artículo