Andradas Heranz, Carlos and Gamboa, J. M.
(1986)
*On projections of real algebraic varieties.*
Pacific Journal of Mathematics, 121
(2).
pp. 281-291.
ISSN 0030-8730

PDF
Restringido a Repository staff only hasta 2020. 929kB |

Official URL: http://pjm.math.berkeley.edu/

## Abstract

In this paper we generalize an earlier result of the authors, showing that any closed semialgebraic set whose Zariski-closure is irreducible, is the projection under a finite map of an irreducible real algebraic set (see

Theorem 3.2 below).

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Irreducible closed semialgebraic set; Orders of function fields; Real algebraic sets |

Subjects: | Sciences > Mathematics > Algebraic geometry |

ID Code: | 14868 |

References: | A-G] C. Andradas and J. M. Gamboa, A note on projections of real algebraic sets, Pacific J. Math., 115 (1984), 1-11. [B] G. W. Brumfiel, Partially ordered fields and semialgebraic geometry, London Math. Soc. Lecture Notes 37, (1979). [C-R] M. Coste and M. F. Roy, La topologie du spectre reel, Cont. Math., 8 (1982), 27-59. [D-R] D. W. Dubois and T. Recio, Order extensions and real algebraic geometry, Cont. Math., 8 (1982), 265-288. [E-L-W] R. Elman, T. Y. Lam and A. Wadsworth, Orderings under field extensions, J. reine ang. Math., 306 (1979), 7-27. [H] R. Hartshorne, Algebraic Geometry, G.T.M. 52, Springer-Verlag, (1977). [P] A. Prestel, Lectures on formally real fields, I.M.P.A. no. 25, (1975). |

Deposited On: | 18 Apr 2012 10:55 |

Last Modified: | 01 Mar 2016 16:17 |

Repository Staff Only: item control page