Complutense University Library

On projections of real algebraic varieties.

Impacto



Andradas Heranz, Carlos and Gamboa, J. M. (1986) On projections of real algebraic varieties. Pacific Journal of Mathematics, 121 (2). pp. 281-291. ISSN 0030-8730

[img] PDF
Restringido a Repository staff only hasta 2020.

929kB

Official URL: http://pjm.math.berkeley.edu/



Abstract

In this paper we generalize an earlier result of the authors, showing that any closed semialgebraic set whose Zariski-closure is irreducible, is the projection under a finite map of an irreducible real algebraic set (see
Theorem 3.2 below).


Item Type:Article
Uncontrolled Keywords:Irreducible closed semialgebraic set; Orders of function fields; Real algebraic sets
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:14868
References:

A-G] C. Andradas and J. M. Gamboa, A note on projections of real algebraic sets,

Pacific J. Math., 115 (1984), 1-11.

[B] G. W. Brumfiel, Partially ordered fields and semialgebraic geometry, London

Math. Soc. Lecture Notes 37, (1979).

[C-R] M. Coste and M. F. Roy, La topologie du spectre reel, Cont. Math., 8 (1982),

27-59.

[D-R] D. W. Dubois and T. Recio, Order extensions and real algebraic geometry, Cont.

Math., 8 (1982), 265-288.

[E-L-W] R. Elman, T. Y. Lam and A. Wadsworth, Orderings under field extensions, J.

reine ang. Math., 306 (1979), 7-27.

[H] R. Hartshorne, Algebraic Geometry, G.T.M. 52, Springer-Verlag, (1977).

[P] A. Prestel, Lectures on formally real fields, I.M.P.A. no. 25, (1975).

Deposited On:18 Apr 2012 10:55
Last Modified:01 Mar 2016 16:17

Repository Staff Only: item control page