Complutense University Library

On The Mutually Non Isomorphic L(P)(L(Q)Spaces

Impacto

Cembranos Diaz, Mª. Pilar and Mendoza Casas, José (2011) On The Mutually Non Isomorphic L(P)(L(Q)Spaces. Mathematische Nachrichten, 284 (16). pp. 2013-2023. ISSN 0025-584X

[img] PDF
Restringido a Repository staff only hasta 2020.

153kB

Official URL: http://onlinelibrary.wiley.com/doi/10.1002/mana.201010056/pdf



Abstract

Banach spaces. Some results on complemented subspaces of l(p)(l(q)) are also given.


Item Type:Article
Uncontrolled Keywords:Banach Spaces; Isomorphic Spaces; Complemented Subspace; Mathematics
Subjects:Sciences > Mathematics > Mathematical analysis
ID Code:14873
References:

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics Vol. 233 (Springer, New York, 2006).

[2] J. Bourgain, P. G. Casazza, J. Lindenstrauss, and L. Tzafriri, Banach Spaces with a Unique Unconditional Basis, up to Permutation, Mem. Am. Math. Soc. 54(322) (1985).

[3] P. Cembranos and J. Mendoza, Banach Spaces of Vector-valued Functions, Lecture Notes in Mathematics Vol. 1676 (Springer-Verlag, Berlin 1997).

[4] P. Cembranos and J. Mendoza, ∞(1 ) and 1 (∞) are not isomorphic, J. Math. Anal. Appl. 341(1), 295–297 (2008).

[5] P. Cembranos and J. Mendoza, The Banach spaces ∞(c0 ) and c0 (∞) are not isomorphic, J. Math. Anal. Appl. 367(2), 361–363 (2010).

[6] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics Vol. 43 (Cambridge University Press, Cambridge 1995).

[7] W. B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, in: Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Isr. J. Math. 13, 301–310 (1972).

[8] M. I. Kadec and A. Pełczy´nski, Bases, lacunary sequences and complemented subspaces in the spaces Lp , Stud. Math. 21, 161–176 (1961/1962).

[9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 92 (Springer-Verlag, 1977).

[10] J. Motos, M. J. Planells, and C. F. Talavera, On some iterated weighted spaces, J. Math. Anal. Appl. 338, 162–174 (2008).

[11] J. Motos and M. J. Planells, On sequence space representations of H¨ormander-Beurling spaces, J. Math. Anal. Appl. 348(1), 395–403 (2008).

[12] A. Pełczy´nski, Projections in certain Banach spaces, Stud. Math. 19, 209–228 (1960).

[13] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978) and (North-Holland Publishing Co. Amsterdam-New York, 1978) first ed., and (Johann Ambrosius Barth, Heidelberg, 1995) second ed.

[14] H. M. Wark, A class of primary Banach spaces, J. Math. Anal. Appl. 326(2), 1427–1436 (2007).

[15] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics Vol. 25 (Cambridge University Press, Cambridge 1991).

Deposited On:19 Apr 2012 08:26
Last Modified:06 Feb 2014 10:11

Repository Staff Only: item control page