Biblioteca de la Universidad Complutense de Madrid

On The Mutually Non Isomorphic L(P)(L(Q)Spaces


Cembranos, Pilar y Mendoza Casas, José (2011) On The Mutually Non Isomorphic L(P)(L(Q)Spaces. Mathematische Nachrichten, 284 (16). pp. 2013-2023. ISSN 0025-584X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


Banach spaces. Some results on complemented subspaces of l(p)(l(q)) are also given.

Tipo de documento:Artículo
Palabras clave:Banach Spaces; Isomorphic Spaces; Complemented Subspace; Mathematics
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:14873

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics Vol. 233 (Springer, New York, 2006).

[2] J. Bourgain, P. G. Casazza, J. Lindenstrauss, and L. Tzafriri, Banach Spaces with a Unique Unconditional Basis, up to Permutation, Mem. Am. Math. Soc. 54(322) (1985).

[3] P. Cembranos and J. Mendoza, Banach Spaces of Vector-valued Functions, Lecture Notes in Mathematics Vol. 1676 (Springer-Verlag, Berlin 1997).

[4] P. Cembranos and J. Mendoza, ∞(1 ) and 1 (∞) are not isomorphic, J. Math. Anal. Appl. 341(1), 295–297 (2008).

[5] P. Cembranos and J. Mendoza, The Banach spaces ∞(c0 ) and c0 (∞) are not isomorphic, J. Math. Anal. Appl. 367(2), 361–363 (2010).

[6] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics Vol. 43 (Cambridge University Press, Cambridge 1995).

[7] W. B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, in: Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Isr. J. Math. 13, 301–310 (1972).

[8] M. I. Kadec and A. Pełczy´nski, Bases, lacunary sequences and complemented subspaces in the spaces Lp , Stud. Math. 21, 161–176 (1961/1962).

[9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 92 (Springer-Verlag, 1977).

[10] J. Motos, M. J. Planells, and C. F. Talavera, On some iterated weighted spaces, J. Math. Anal. Appl. 338, 162–174 (2008).

[11] J. Motos and M. J. Planells, On sequence space representations of H¨ormander-Beurling spaces, J. Math. Anal. Appl. 348(1), 395–403 (2008).

[12] A. Pełczy´nski, Projections in certain Banach spaces, Stud. Math. 19, 209–228 (1960).

[13] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978) and (North-Holland Publishing Co. Amsterdam-New York, 1978) first ed., and (Johann Ambrosius Barth, Heidelberg, 1995) second ed.

[14] H. M. Wark, A class of primary Banach spaces, J. Math. Anal. Appl. 326(2), 1427–1436 (2007).

[15] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics Vol. 25 (Cambridge University Press, Cambridge 1991).

Depositado:19 Abr 2012 08:26
Última Modificación:03 Mar 2016 15:10

Sólo personal del repositorio: página de control del artículo