Biblioteca de la Universidad Complutense de Madrid

Analysis of helium bubble growth in radioactive waste


Carpio, Ana y Tapiador, B. (2010) Analysis of helium bubble growth in radioactive waste. Nonlinear Analysis: Real World Applications, 11 (5). pp. 4174-4184. ISSN 1468-1218

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


A discrete kinetic model for the growth of helium bubbles in plutonium is proposed and analyzed. This model captures some relevant qualitative features of the time behavior of the distribution of bubble sizes. Analytic formulae for the solutions are given, which agree reasonably well with the numerical solutions, and a rigorous existence theory is established for three different equivalent formulations.

Tipo de documento:Artículo
Palabras clave:Discrete kinetic models; Integrodifferential equations; Discrete fronts; Irreversible molecular aggregation
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Ciencias > Física > Termodinámica
Código ID:14874

[1] C.M. Schaldach, W.G. Wolfer, Kinetics of helium bubble formation in nuclear and structural materials, in: M.L. Grossbeck, T.R. Allen, R.G. Lott, A.S. Kumar

(Eds.), Effects of Radiation Materials: 21st Symposium, ASTM STP 1447, ASTM International, West Conshohocken, 2004.

[2] A.J. Schwartz, M.A. Wall, T.G. Zocco, W.G. Wolfer, Characterization and modelling of helium bubbles in self-irradiated plutonium alloys, Phil. Mag. 85

(2005) 479488.

[3] A.G. McKendrick, Studies on the theory of continuous probabilities with special reference to its bearing on natural phenomena of a progressive nature,

Proc. Lond. Math. Soc. 13 (1914) 401416.

[4] L.L. Bonilla, A. Carpio, J.C. Neu, W.G. Wolfer, Kinetics of helium bubble formation in nuclear materials, Physica D 222 (2006) 131140.

[5] A. Carpio, M.L. Rapun, Domain reconstruction by thermal measurements, J. Comput. Phys. 227 (2008) 80838106.

[6] T.M. Flett, Differential Analysis, Cambridge Univ. Press, Cambridge, 1980.

[7] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, Cambridge, 1991.

[8] P. Linz, Linear multistep methods for Volterra integro-differential equations, J. Assoc. Comput. Mach. 16 (1969) 295301.

[9] W.L. Mocarsky, Convergence of step-by-step methods for nonlinear integro-differential equations, J. Inst. Math. Appl. 8 (1971) 235239.

Depositado:19 Abr 2012 08:30
Última Modificación:28 Oct 2016 07:51

Sólo personal del repositorio: página de control del artículo