Biblioteca de la Universidad Complutense de Madrid

An iterative method for parameter identification and shape reconstruction

Impacto

Carpio, Ana y Rapún, M.L. (2010) An iterative method for parameter identification and shape reconstruction. Inverse Problems in Science and Engineering, 18 (1). pp. 35-50. ISSN 1741-5977

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

719kB

URL Oficial: http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=49146919&site=ehost-live



Resumen

An iterative strategy for the reconstruction of objects buried in a medium and the identification of their material parameters is analysed. The algorithm alternates guesses of the domains using topological derivatives with corrections of the parameters obtained by descent techniques. Numerical experiments in geometries with multiple scatterers show that our scheme predicts the number, location and shape of objects, together with their physical parameters, with reasonable accuracy in a few steps.


Tipo de documento:Artículo
Palabras clave:Inverse scattering; topological derivative; domain reconstruction; parameter identification; non-destructive testing; scattering; inverse transmission problems
Materias:Ciencias > Física > Electromagnetismo
Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:14888
Referencias:

[1] M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Probl. 21 (2005),

pp. R1–R50.

[2] G.R. Feijoo, A new method in inverse scattering based on the topological derivative, Inverse Probl.

20 (2004), pp. 1819–1840.

[3] B.B. Guzina and M. Bonnet, Small-inclusion asymptotic of misfit functionals for inverse problems

in acoustics, Inverse Probl. 22 (2006), pp. 1761–1785.

[4] A. Carpio and M.L. Rapu´ n, Solving inverse inhomogeneous problems by topological derivative

methods, Inverse Probl. 24 (2008), p. 045014.

[5] B.B. Guzina and I. Chikichev, From imaging to material identification: A generalized concept of

topological sensitivity, J. Mech. Phys. Solids 55 (2007), pp. 245–279.

[6] B. Delattre, D. Ivaldi, and C. Stolz, Application du controˆle optimal a` l’identification d’un

chargement thermique, Rev. Eur. Elem. Finites 11 (2002), pp. 393–404.

[7] A. Peters, H.U. Berger, J. Chase, and E. Van Houten, Digital-image based elasto-tomography:

Nonlinear mechanical property reconstruction of homogeneous gelatine phantoms, Int. J. Inf. Syst.

Sci. 2 (2006), pp. 512–521.

[8] K.D. Paulsen, P.M. Meaney, and L. Gilman, Alternative Breast Imaging: Four Model Based

Approaches, Springer Series in Engineering and Computer Science, Vol. 778, Springer, Boston,

2005.

[9] Q.H. Liu, Z.Q. Zhang, T.T. Wang, J.A. Bryan, G.A. Ybarra, L.W. Nolte, and W.T. Joines,

Active microimaging I-2-D forward and inverse scattering methods, IEEE Trans. Micr. Theor.

Tech. 50 (2002), pp. 123–133.

[10] H.T. Liu, L.Z. Sun, G. Wang, and M.W. Vannier, Analytic modeling of breast elastography,

Med. Phys. 30 (2003), pp. 2340–2349.

[11] A. Carpio and M.L. Rapu´ n, Domain reconstruction by photothermal techniques, J. Comput.

Phys. 227 (2008), pp. 8083–8106.

[12] F. Santosa, A level set approach for inverse problems involving obstacles, ESAIM Control, Optim.

Calculus Variations 1 (1996), pp. 17–33.

[13] A. Carpio and M.L. Rapu´ n, Topological Derivatives for Shape Reconstruction, Lecture Notes in

Mathematics, Vol. 1943, Springer, Berlin, 2008, pp. 85–131.

[14] A. Carpio and M.L. Rapu´ n, Topological derivative based methods for non-destructive testing,

in Numerical Mathematics and Advanced Applications, K. Kunisch, G. Of, and O. Steinbach,eds., Springer, Berlin, 2008, pp. 687–694.

[15] M.L. Rapu´ n and F.J. Sayas, A mixed-FEM and BEM coupling for the approximation of the

scattering of thermal waves in locally non-homogeneous media, ESAIM Math. Model. Numer.

Anal. 40 (2006), pp. 871–896.

[16] O. Dorn and D. Lesselier, Level set methods for inverse scattering, Inverse Probl. 22 (2006),

pp. R67–R131.

[17] A. Litman, D. Leselier, and F. Santosa, Reconstruction of a two-dimensional binary obstacle by

controlled evolution of a level-set, Inverse Probl. 14 (1998), pp. 68–706.

[18] M.L. Rapu´ n and F.J. Sayas, Indirect methods with Brakhage–Werner potentials for Helmholtz

transmission problems, in Numerical Mathematics and Advanced Applications, A. Bermu´ dez de

Castro, D. Go´ mez, P. Quintela, and P. Salgado, eds., Springer, Berlin, 2006, pp. 1146–1154.

Depositado:19 Abr 2012 08:57
Última Modificación:28 Oct 2016 07:50

Sólo personal del repositorio: página de control del artículo